INDEX

- President Message 3
- Secretary Message 4
- From the Editor’s Desk 5
- Invited Articles:
 - Investigations on Day 2 of an IVF Cycle…Dr Renu Makkar 6
 - LH Surge – Detection & Clinical Implications…Dr Ritu Jain 7
 - Anti Mullerian Hormone (AMH) evaluation and its clinical use…Dr Rashmi Sharma, Dr Imlesh Meena 8
 - Prolactin And Infertility…Dr Vandana Bhatia 9
 - Genetic Testing in Infertility……Dr KU Kunjimoideen 10
 - Ultrasound To Detect Uterine, Tubal And Ovarian Pathology…Dr JK Goel 11
 - Diagnosing Hyperandrogenism & Hyperinsulinemia……Dr Jayesh Amin 14
 - Hysterosalpingography And Saline-Infusion-Sonography…Dr Monica Singh 15
 - Diagnostic Laparoscopy in Reproductive Medicine…Dr Nymphaea Walecha, Dr Rhythm Ahuja Gupta 16
 - Endometrial Biopsy – As A Diagnostic Modality In Infertility…Dr Alok Sharma, Dr Rohini Rao 17
 - Basic Semen Analysis…Dr Sangeeta Sinha 18
 - Investigating Azoospermia…Dr Suparna Banerjee 19
- Chapter Activities 21
- IFS - Representing India At Global Level 22
MESSAGE FROM THE PRESIDENT DESK

Dear Friends,

This issue of IFS Conversations focuses on diagnostics in infertility. What test to use when and false positive and false negative of a test wherever relevant is discussed. The “IFS Conversation” also showcases the various recent academic activities conducted by our extremely enthusiastic and committed members spread over 27 chapters across India.

Several of our members have also made IFS very proud through their remarkable achievements at the recent ESHRE Annual Meeting held at Vienna on 23rd to 26th June. My heartiest congratulations to all of you!

Fertivision 2019 is around the corner and is being held in Delhi. Those who have not registered yet, are gently reminded to visit the website and register immediately! We look forward to meeting each one of you at this annual academic event at Delhi.

Please do visit our website www.indianfertilitysociety.org for regular updates on our forthcoming courses, CMEs and conferences.

With best wishes,

Dr M. Gouri Devi

IFS SPECIAL INTEREST GROUP (SIG 2018 - 2020)

1. PCO GROUP
Convenor : Dr Bharati Dhorepatil
Co Convenor : Dr Rashmi Sharma

2. REPRODUCTIVE ENDOCRINOLOGY
Convenor : Dr Sangeeta Sinha
Co Convenor : Dr Shweta Mittal

3. MALE INFERTILITY
Convenor : Dr P.M.Gopinath
Co Convenor : Dr Pranay Ghosh

4. EMBRYOLOGY
Convenor : Dr Sarabpreet Singh
Co Convenor : Mr. Gaurav Kant

5. ULTRASOUND
Convenor : Dr Ashok Khurana
Co Convenor : Dr Ritu Khanna

6. ENDOSCOPY
Convenor : Dr Natan Jain
Co Convenor : Dr Malvika Mishra

7. FERTILITY PRESERVATION
Convenor : Dr Jayesh Amin
Co Convenor : Dr Papa Dasari

8. ENDOMETRIOSIS AWARENESS GROUP
Convenor : Dr K.U.Kunjimoideen
Co Convenor : Dr Nymphae Walecha

9. HOLISTIC MEDICINE
(YOGA, ACUPUNCTURE)
Convenor : Dr Rajvi Mehta
Co Convenor : Dr Shalini Ginder

10. COUNSELLING & PATIENT SUPPORT
Convenor : Dr Poonam Nayar
Co Convenor : Dr Puneet R.Arora

11. POOR OVARIAN RESPONSE
Convenor : Dr Geeta Khanna
Co Convenor : Dr Rupali Bassi Goyal

12. RESEARCH & METHODOLOGY
Convenor : Dr Sandeep Talwar
Co Convenor : Dr Vandana Bhatia

13. APPLIED GENETICS
Convenor : Dr Ratna Puri
Co Convenor : Dr Manisha Bajpai

SIG ADVISORY BOARD
DR NALINI MAHAJAN
DR S.N.BASU
DR ALKA KRIPLANI
DR JAYANT MEHTA

DR GOURI DEVI
President - IFS
MESSAGE FROM THE SECRETARY’S DESK

Dear Friends,

Greetings from IFS Secretariat

It gives me immense pleasure to keep you updated on IFS activities through the IFS conversations, our newsletter. This issue is on Infertility diagnostics and focuses on testing of hormones and their relevance to an infertile couple. It also focuses on imaging and genetic testing.

We are proud to share that we have inaugurated our 27th chapter at Andhra Pradesh. As IFS expands throughout India we continue to train through our focused meetings, CMEs and fellowship program. An update of all has been included in this newsletter.

We are hosting the next fertivision 2019 at Delhi from 6th to 8th December at Leela ambience, Gurugram. There are 10 precongress workshops and a 2 day conference which includes a large international faculty. We hope you have registered. Online registration is available at the website Hope to see you there!

Dr (Prof) Pankaj Talwar
Dear Friends,

Greeting from team IFS!

We have come out with yet another issue for IFS conversations, our newsletter which updates members on all activities of the society.

This issue discusses the test done infertility – Infertility Diagnostics. It starts with day 2 hormones and assessment of ovarian reserve with AMH. A review of the prolactin hormone is given. Methods to detect and interpret LH surge which is an important step to identify ovulation are discussed. Diagnosis of hyperandrogenemia and insulin resistance are outlined clearly. Further it discusses the genetic test required in both male and female partner. The role of ultrasound and HSG in finding causes of infertility is extensively discussed. The advantages of surgical diagnostic interventions like diagnostic hysteroscopy and laparoscopy and the endometrial biopsy are deliberated. Lastly diagnostic test for azoospermia are chalked out.

We have also included chapter activities and activities of special interest groups.

Fertivision is approaching and we hope to see each one of our members there. Please do register from the website for this academic bonanza.

Any suggestions for the newsletter are welcome

Warm Regards!

Dr Surveen Ghumman Dr Shweta Mittal Gupta
Day 2 investigations are conducted on day 2 of period and includes Baseline ultrasound scan, Antral follicle count (AFC), serum estradiol (E2), follicle stimulating hormone (FSH), Luteinizing hormone (LH) and progesterone. These help to predict ovarian response. In the process of controlled ovarian hyperstimulation (COH), the principle steps are to evaluate ovarian reserve function, predict ovarian response, and develop an optimal individualized COH protocol.

Baseline scan should be trans-vaginal for higher accuracy. This scan is done on 2nd or 3rd day of the cycle. Baseline scan should be trans-vaginal for higher reserve function, predict ovarian response, and develop an optimal individualized COH protocol.

AFC (Antral Follicle Count)
The AFC indicates the number of follicles with diameters of 2-9 mm. They begin to develop after recruitment in the luteal phase of the previous cycle and reflect the number of follicles that will continue to mature during the ovulation treatment cycle.¹,²

Counting ovarian antral follicles by ultrasound: AFC should be performed with the help of a transvaginal ultrasound (US) probe with frequency ≥7 MHz. AFC is assessed by using real-time two-dimensional (2D) US, stored 2D-US cine-loops and stored three-dimensional (3D) US datasets. Real-time 2D-US is advantageous as it permits additional maneuvers to determine whether an anechoic structure is a follicle, but requires a longer scanning time, especially when there are large numbers of follicles, resulting in more discomfort to the patient.

Discordance between antral follicle counts and anti-Müllerian hormone levels in women undergoing in vitro fertilization: It has been observed that anti-Müllerian hormone (AMH) is positively associated with antral follicle count (AFC). But sometimes, there is often discordance between the AMH level and AFC in clinical practice. It is seen that approximately one in five patients in clinical practice showed discordance between AFCs and AMH levels. In cases when AMH and AFC are discordant, the higher AMH within the same AFC quartile have the higher number of retrieved oocytes, the cumulative live birth rate and the ovarian responsiveness are intermediate between that when both are concordant on either end. Both AMH and AFC would be recommended to be utilized for individualization of stimulation regimen; when they fall into discordant categories, it would be sensible to adopt an intermediate dose of gonadotrophin.³

Follicle Stimulating Hormone
Early follicular phase serum FSH is the commonly used endocrine test for determining the ovarian reserve. It is based on the feedback inhibition of FSH secretion by ovarian hormones and is an indirect marker of the ovarian reserve. At the beginning of the menstrual cycle, the estradiol (E2) and inhibin B levels inhibit FSH secretion from the pituitary. In women with diminished ovarian reserve, the production of ovarian hormones is insufficient, and this leads to elevated pituitary FSH secretion. Levels of FSH higher than 9 IU show a decreased ovarian reserve.⁴

Luteinizing hormone
Day 2 LH should ideally be below 5 IU/L. The levels show down regulation when less than 2 IU/L. There may be raised levels in case of PCOS.

Serum Estradiol
For IVF cycle E2 is done on day 2. If E2 > 80 pg/ml it indicates poor IVF outcome as it indicates early follicular recruitment due to high FSH and poor ovarian reserve. Raised E2 on day 2 may also be present in case of a basal cyst and stimulation should be shifted to next cycle.

E2 levels are a reflection of the ovarian reserve. Early elevations in basal serum E2 are due to the advanced follicular development and the early selection of a dominant follicle, as seen in older women, due to rising FSH levels. It has been observed that women with E2 levels <20 pg/ml, have an increased reproductive efficiency after IVF. Combining E2 with FSH on cycle day 3 is shown to have reduced the incidence of false-negative tests obtained when FSH alone was used. The elevation of both indicates poor ovarian response. E2, however, has low predictive accuracy and lacks high sensitivity and specificity cut-off levels. It may be used as a guide for starting stimulation with gonadotropins; however, it should not be used to exclude couples from ART program.⁵

Progesterone (P4)
Progesterone levels refer to the measurement of ovarian function. Progesterone levels are low during the follicular phase (<1 ng/ml), rise on the day luteinizing hormone (LH) surges (1-2 ng/ml), and increase until they peak approximately 1 week after ovulation. The levels <3 ng/ml imply anovulation, except when evaluated after a woman ovulates or prior to menses when progesterone levels are at a physiological low. Raised early follicular phase progesterone levels in menstrual cycle indicates an inefficient luteolysis. During early follicular phase adrenals contribute for progesterone secretion but late follicular phase progesterone is secreted mainly from ovary. As ovarian age advances, it causes shorter follicular phase and abnormalities in luteal phase function which may cause elevated p4 level due to insufficient luteolysis. If progesterone is more than 1.5 ng/ml stimulation should be postponed as it is indicative of a basal cyst or an active corpus luteum.

Inhibin B
The dynamic test evaluates the response of the hypothalamic–pituitary–ovarian axis to stimulation. Early follicular phase serum FSH is the commonly used endocrine test for ovarian reserve. It is based on the feedback inhibition of FSH secretion by ovarian hormones and, hence, is an indirect marker of the ovarian reserve. At the beginning of the menstrual cycle, the E2 and inhibin B levels inhibit FSH secretion from the pituitary. In women with diminished ovarian reserve, the production of ovarian hormone is insufficient, and this leads to elevated pituitary FSH secretion. Inhibins are glycoproteins secreted by the granulosa and theca cells. It plays a major role in the selection of the dominant follicle and has a regulatory effect on preovulatory follicles. Moreover, there are some studies that have shown that inhibin B alone is not a very useful marker of the ovarian reserve. The routine use of inhibin B is, hence, not recommended in infertile couples.

Proposed protocol for Ovarian Reserve (OR) screening:
- Ovarian reserve screening should be provided to all women at 30 years of age who potentially seek future fertility and should be voluntary.
- Pre-screening counseling regarding the decline in fertility with age and merits/de-merits of ovarian reserve screening should be performed before the test is ordered.
- AMH is an ideal screening test of ovarian reserve as it is the least expensive and intrusive, has the least inter-observer variability and can be taken at any stage in the menstrual cycle.
- A serum AMH ≥1.0 µg/mL in the 10th percentile for age indicates that the individual has poor ovarian reserve. A repeat confirmatory AMH and FSH test (Days 3–5, off-hormonal contraception for 2 months) should be performed with an AFC scan.
- Abnormal results must be discussed with a reproductive endocrinologist for an understanding of the relative merits of the test and the available treatment options.
- Patients with borderline low ovarian reserve screening results may elect to have follow-up ovarian reserve testing 12 months later to assess the rate of decline in ovarian reserve before acting on the result.

References:
Luteinizing Hormone (LH) is a gonadotropin which is synthesized and secreted by the anterior pituitary gland in response to GnRH. LH surge is the significant peak and important milestone in ovarian cycle as it defines the end of follicular phase and marks the beginning of luteal phase. LH surge is a relatively precise predictor of ovulation and reflects the peak effect of interplay of complex autocrine and paracrine factors of pituitary and gonadal hormones. LH surge stimulates resumption of meiosis and the completion of reduction division in the oocyte with the release of the first polar body. Hence LH surge is the cardinal event for conception and fertility.

Physiology

LH is a glycoprotein with a subunit similar to HCG and biospecific β subunit, both share the same receptors. Follicular recruitment starts with late luteal phase LH surge. These recruited follicles secrete estrogen, which subsequently inhibits FSH secretion in a negative feedback loop involving the pituitary gland, the hypothalamus, and inhibit β. The follicle, most sensitive to lowered FSH levels continue to grow, while others become atretic. This dominant follicle continues to secrete estrogen. Serum estradiol concentration at a threshold level could be a more appropriate definition, particularly commonly reported although a doubling from basal level could be a more appropriate definition, particularly for patients with high basal LH levels.

Detecting LH surge

High sensitive urinary LH kits detect concentrations as low as 22 mIU/mL while natural LH surge concentration in urine ranges from 20 to 100 mIU/mL. Detecting LH surge in urine is cost effective, sensitive, effective and natural method to plan pregnancy but not ideal for contraception as sperm ejaculated before a woman's LH surge may survive long enough to fertilize the ovum.

The mean time interval after a positive urinary LH test to follicular rupture detected by sonography was reported to be 20–3 hr (95% CI 14–26), and in a study focused on infertile women, sensitivity, specificity, and accuracy of the urinary LH test to detect oovulation reached 1.00, 0.25, and 0.97, respectively.

Despite positive correlations, LH surge may not always signify true ovulation. “Luteinized unruptured follicle syndrome” can occur in 10.7% of menstrual cycles in normally fertile women. Women with this syndrome have a normal LH surge, functioning corpus luteum, and menstruation, but no ovocyte is released. In infertile women, premature LH surge that did not trigger ovulation was detected in 46.8% of cycles.

Clinical Implications

Physiological LH surge is mimicked by pharmacological LH surge by agonist trigger or dual trigger in antagonist cycle and HCG trigger in agonist cycle. LH surge by use of GnRHa as a trigger in antagonist cycle is quite physiologic with simultaneous induction of FSH surge. This FSH surge induces LH receptor formation in luteinizing granulosa cells, promotes oocyte nuclear maturation and cumulus expansion, opens the gap junctions between the oocyte and cumulus cells which are important in signaling pathways, allowing the oocyte and cumulus cell mass to detach from the follicular wall before ovulation. This might explain retrieval of more mature oocytes after GnRHa trigger compared with hCG trigger. No precise threshold of circulating post-trigger LH- and progesterone-circulating levels has been defined. Some investigators have indicated an LH circulating level of 15 IU/L as the cut-off value (Kammer et al., 2013).

Premature LH surge occurs in PCOS cases and in stimulated cycles (induced multiple follicular growth) where exogenous FSH allows more follicles to grow and secrete higher serum estradiol concentrations which triggers pre-ovulatory LH surge prematurely. Premature luteinization may have an unfavorable impact on oocyte quality, fertilization, and implantation as LH surge is reached even before follicle is fully developed. Without intervention, premature luteinization occurs in about 25% of ovarian stimulation cycles, leading to compromised treatment outcomes. In high responders or stimulation with high doses of FSH, antagonist should be started on D5 of ovarian stimulation rather than on D6 to prevent premature LH rises (flexible than fixed). For successful assisted reproduction treatment, it is essential to prevent premature luteinization and ovulation.
2. aMh also decreases the primordial follicle dual actions.

conservation of ovarian reserve. This is done by exerting granulosa cells diminishes. aMh has a potential role in follicular growth. When follicles reach in FSH dependent 2 to 8 mm have been seen to express highest amount aMh expression has been observed. Follicle measuring the development of Mullerian duct structures in males aMh was predominantly known for its role in inhibiting role of AMH in ovarian physiology

AMH-anti Mullerian hormone also known as Mullerian inhibiting hormone (AMH) was discovered in 1947 by a French researcher Alfred Jost. He observed that AMH is responsible for Mullerian duct regression during fetal development in rabbits. AMH was initially known known for its role in male sexual differentiation but in 1996 it was identified and reported in females. It was first isolated and purified in 1984. In 1986 and 1994 respectively, genes for aMh and its receptor were sequenced and cloned.

AMH is a dimeric glycoprotein from transforming growth factor-β(TGF-β) family and has its gene on chromosome 19 p13.3. The hormone binds to anti-Mullerian hormone receptor (aMhR), which is a single transmembrane protein with serine-threonine kinase activity. The receptors are expressed-on target organs like Mullerian ducts, Sertoli and Leydig cells of testis, and granulosa cells of ovary. AMH is also regulated by a number of genes such as SF1, GATA1, WT1, DAX1, and SOX9.

Role of AMH in ovarian physiology

AMH was predominantly known for its role in inhibiting the development of Mullerian duct structures in males but newer studies have shown its relation to female reproductive physiology as well. The dormant follicles do not secrete AMH but as soon as they are recruited for maturation (preantral and small antral follicles) AMH expression has been observed. Follicle measuring 2 to 8 mm have been seen to express highest amount of AMH, thus making it the earliest marker of ovarian follicular growth. When follicles reach in FSH dependent phase of maturation (8-10mm) secretion of AMH by granulosa cells diminishes. AMH has a potential role in conservation of ovarian reserve. This is done by exerting dual actions.

1. It stops the primary recruitment of follicle for maturation (primordial to primary follicle transition) by hindering several growth factors like KIT ligand and basic fibroblast growth factor.
2. AMH also decreases the primordial follicle sensitivity to FSH since puberty, therefore reducing the possibility of their cyclic recruitment.

After the follicle matures to a size of 8mm it is selected for dominance, following which AMH production decreases. These observations reinforce the role of AMH as major regulator of initial and cyclic recruitment of follicles by maintaining their threshold for FSH sensitivity. This has been further upheld by the studies in the AMH null mice. Increased number of follicle uptake leads to burnout of follicles at a much younger age in AMH null mice. Thus, AMH has negative effect on early follicular recruitment therefore limiting the entry of primordial follicles into the growing pool and preventing them from exhaustion at early age. AMH also has an inhibitory effect on cyclic follicular recruitment in vivo by reducing the follicle sensitivity to FSH.

AMH assays

AMH has great scope in clinical application but it is limited in its use due to its numerous biological features like-

1. Molecular heterogeneity of circulating AMH level with a non-cleaved biologically inactive form and a cleaved biologically active form.
2. Variable sensitivity of the immunomodulators to interference by complement C1q and C3.
3. Stability of AMH sample during storage is not well known.
4. High interlaboratory variability chiefly for low value of serum AMH.

Because of all these variables, measurement of AMH has not shown consistency. Also, because there are different ELISA immunomodulators used all over the world.

a. Gen II (Beckman coulter)
b. EIA AMH/MS kits (IOT or "immunotech" Beckman coulter)
c. AL-105-4 (Anshlabs),

These all use different monoclonal antibody with different standards which leads to interlaboratory differences thus causing absence of consensus of reference values.

Hence to bypass these problems in serum AMH estimation various developments have taken place like-

1. Development of an ultrasecretive essay (pico AMH kit, Anshlabs),

These newer advances have made it possible to achieve near identical values and hopefully an international standard of serum AMH values would be soon developed.

Ovarian reserve may also vary due to ethnicity as shown by some studies. Hence we need to establish a baseline level of AMH among the different populations of the world. As of now literature states that AMH levels in women between the ages of 25-40 years should be between 3.0 to 3.0 ng/ml to be normal, 0.7 to 0.9 ng/ml as low normal and 0.3 to 0.6 ng/ml as low and below 0.3 is considered as very low. AMH is quite stable throughout its entire life span and considered as very low. AMH is quite stable throughout its entire life span and considered as very low.

Interpretation of AMH values and its clinical uses

1. Relationship with age at menopause: It is at present unclear whether AMH measurements can successfully predict the age at menopause.
2. Detecting the chemotherapy, radiotherapy induced damage: AMH appears to have greater sensitivity than FSH or Inhibin B in detecting the ovarian damage following chemotherapy, radiotherapy. Pre-treatment AMH level is also able to predict on-going ovarian activity following such therapy as pre-treatment AMH levels were significantly higher in women who continued to have menses. (Anderson et al. 2013)
3. Detecting the surgically induced damage: Significant decline in AMH levels has been confirmed following endometriosis surgeries indicating removal of substantial part of ovarian reserve. (Somigliana et al. 2012). This knowledge helps us in decision making process for ovarian surgery in women desirous of future fertility.
4. Prediction of ovarian response following ovarian stimulation in ART: That AMH can predict ovarian response following ovarian stimulation accurately, has been demonstrated in many studies (La Marca et al. 2010, Broer et al. 2011). This has enabled clinicians to develop individualized ovarian stimulation strategies for patients at the extremes of ovarian reserve like PCOS patients and poor ovarian reserve patients. AMH is also useful as a counselling tool for couples for realistic prediction of number of oocytes. Age as a surrogate marker for oocyte quality has also been helpful in counselling couples.
5. Prediction of clinical pregnancy following ART: The significance of serum AMH levels in predicting clinical pregnancy during ART treatment is lower in patients with a low risk of DOR. Hence it is not advisable to refuse ART treatment based solely on AMH levels.

By utilizing AMH, it is now possible to measure the intrinsic or acyclic part of ovarian cycle serving as a very useful clinical biomarker of ovarian function. There is a need for improved assay validity and international standard for AMH for its better clinical use in a variety of clinical situations.

References

Prolactin And Infertility

Executive member, IFS
Senior Consultant, Southend Fertility Centre, Delhi

Human prolactin (PRL) is a hormone secreted by the lactotrophic cells of the anterior pituitary gland. It has a variety of biological functions in reproduction apart from playing an important role in lactation. Secretion of prolactin is under hypothalamic control and does not depend on any negative feedback mechanism by the peripheral hormones. Counter current flow in the hypophysial pituitary portal system initiates secretion of dopamine from the hypothalamus which is believed to be the principle prolactin inhibiting factor (PIF). α-adrenergic blocking agents reduce but do not abolish the prolactin stimulation, stress and sleep.

Human PRL is found to be present in different molecular forms on which the bioactivity of the hormone depends. PRL is synthesized as a prehormone with a molecular weight of 26 kDa. When a preprolactin molecule is cleaved, the resulting PRL polypeptide has a molecular weight of 23 kDa (198 amino acid). This monomeric form of PRL is the major circulatory form and is also known as little PRL and it is known to be both biologically and immunologically active. The other forms mainly include the big PRL with a molecular weight of approximately 50 kDa and the tetramer big-big PRL with a molecular weight greater than 150 kDa. These latter two forms are known to have low biological and immunological activity.

Diagnosis
Lack of awareness among clinicians together with lack of proper diagnostic methods is a major cause for unnecessary expensive investigations, treatments and follow ups regarding hyperprolactinemia. A cause of concern while diagnosing hyperprolactinemia is that macroprolactinemia is often overlooked. False high prolactin values, labelled as hyperprolactinemia are obtained as macroprolactin interferes with most commercially available immunoassays used for measuring prolactin. The values depend on the assay method used. No laboratory method was available to diagnose simple macroprolactinemia in the past. But now, screening of macroprolactinemia can be done by polyethylene glycol precipitation method (PEG) though the gold standard or the reference method remains 125 I prolactin binding sites.

Pathological Causes
Table 1: Main causes of pathologic hyperprolactinemia

<table>
<thead>
<tr>
<th>DISFUNCTION/ DISEASE</th>
<th>MECHANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>Impaired hypothalamic dopamine secretion</td>
</tr>
<tr>
<td>Pituitary tumors: micro- or macroprolactinoma, adenoma</td>
<td>Disruption of dopamine delivery and/or secretion of prolactin</td>
</tr>
<tr>
<td>Acromegaly</td>
<td>Prolactin secretion from a GH adenoma</td>
</tr>
<tr>
<td>Empty Sella Syndrome</td>
<td>Damage of the pituitary</td>
</tr>
<tr>
<td>Primary hypothyroidism</td>
<td>Increased hypothalamic TRH</td>
</tr>
<tr>
<td>Polycystic ovary syndrome</td>
<td>Raised estrogen concentration</td>
</tr>
<tr>
<td>Renal failure</td>
<td>Reduced PRL clearance</td>
</tr>
<tr>
<td>Drugs ---</td>
<td>Inhibition of dopamine release</td>
</tr>
<tr>
<td>Antidopaminergics, Antipsychotics, Antiiemics,</td>
<td></td>
</tr>
<tr>
<td>Tricyclic antidepressants,</td>
<td></td>
</tr>
<tr>
<td>Drugs -- Opiates</td>
<td>Stimulation of opioid hypothalamic receptors</td>
</tr>
<tr>
<td>Drugs -- Estrogens</td>
<td>Stimulation of lactotropes</td>
</tr>
</tbody>
</table>

Radiological Evaluation
Prolactin levels lower than 100ng/ml may be observed with all causes of hyperprolactinaemia, while higher levels are usually indicative of a prolactin secreting tumour. Pituitary imaging should be performed in all patients with persistently high levels of prolactin levels. Magnetic resonance imaging is preferred over Computerized axial tomography (CT) are usually negative in macroprolactin to assess sellar area though both of them are usually negative in macroprolactinaemia cases. In few cases abnormalities do appear though they are infrequent as compared to those seen in patients of hyperprolactinemia due to other causes.

Table 2: Comparison of different methods for the diagnosis of hyperprolactinemia

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple, inexpensive screening test</td>
<td>Not highly specific</td>
</tr>
<tr>
<td>Accurate confirmatory test</td>
<td>Time consuming and expensive</td>
</tr>
<tr>
<td>Identifies IgG bound prolactin</td>
<td>Not highly specific</td>
</tr>
<tr>
<td>Identifies anti prolactin auto antibodies</td>
<td>Time consuming, hazardous and needs radioisotope facilities</td>
</tr>
</tbody>
</table>

Etiology
Hyperprolactinemia refers to an increase in serum PRL concentrations in blood and it could be physiological or pathological. Physiological causes include pregnancy/lactation/ nipple stimulation, stress and sleep. A false presence of macroprolactin. Hence results of PEG test should be interpreted with great caution in patients with IgG myeloma and polyclonal hypergammaglobulinemia as in HIV patients.

2. Gel filtration chromatography: This method has been used to separate the three molecular forms of prolactin: the little prolactin, the big prolactin and the big big prolactin. A diagnosis of macroprolactinemia is made when more than 30 – 60 % is in big big prolactin form in gel filtration chromatography. Though this method is considered to be a gold standard, it is expensive, time consuming and labourious method discouraging the clinicians to make use of it.

3. Protein A/G column: Protein A binds to the Fc portion of immunoglobulin molecules and protein G binds only to IgG and its subclasses. This separates IgG, IgM, IgD and albumin.

4. 125 I – PRL binding study: It helps in identifying anti prolactin autoantibodies which are a common cause of IgG bound PRL. But it is time consuming and hazardous as it requires radio isotope facilities.

Table 2: Comparison of different methods for the diagnosis of hyperprolactinemia

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel filtration chromatography</td>
<td>Accurate confirmatory test</td>
<td>Time consuming and expensive</td>
</tr>
<tr>
<td>Protein A/G column</td>
<td>Identifies IgG bound prolactin</td>
<td>Not highly specific</td>
</tr>
<tr>
<td>125 I PRL</td>
<td>Identifies anti prolactin auto antibodies</td>
<td>Time consuming, hazardous and needs radioisotope facilities</td>
</tr>
</tbody>
</table>

Common conditions which raise prolactin levels like vigorous exercise, drug intake, trauma, renal impairment, cirrhosis and a non-fasting sample should be excluded while diagnosing hyper prolactinemia. Prolactin secretion follows a circadian rhythm with higher concentration during the night and lower during the day. Normal prolactin levels are typically 10 – 25 ng/ml in women. Levels should be measured preferably in the morning two hours after waking up. If the prolactin levels are markedly increased, repeat the levels. Even one normal value should be considered as normal and an isolated raised one should be discarded as spurious.

In a patient with suspected medication induced hyperprolactinemia, the drug should be discontinued for at least three days after physician consultation and then the levels should be repeated.
Hyperprolactinemia is a common finding and is associated with subfertility / infertility in young females but one must be cautious and suspect macroprolactinemia in the differential diagnosis before commencing any treatment for all cases of hyperprolactinemia. The actual cases of true hyperprolactinemia are symptomatic and can be treated with dopamine agonists with restoration of fertility.

References:
Clinical and Developmental Immunology Volume 2012, Article ID 167132.

Genetic Testing in Infertility

Infertility is considered a major public health issue, and approximately 1 out of 6 people worldwide suffer from infertility during their reproductive livespans. Genetic tests are becoming increasingly relevant in reproductive medicine. More genetic tests are required to identify the cause of male and/or female infertility, identify carriers of inherited diseases and plan antenatal testing. In particular, genetic tests are carried out for three main purposes in reproductive medicine: the identification of the infertility causes, identification of genetic diseases transmissible to offspring, and optimization of the assisted reproductive technology.

Normally, gametes with genetic or chromosomal alterations have reduced reproductive potential. Thanks to ART, many of these difficulties can be overcome, and therefore, genetic tests (carrier screening, preimplantation and prenatal diagnosis) have the crucial impact of monitoring the possible transmission of these genetic alterations to the offspring. To date, the diagnostic options for couples at risk of transmitting a specific inherited disorder to their offspring are preimplantation genetic testing (PGT) and prenatal diagnosis (PND). These two diagnostic procedures share the same purpose but differ in diagnostic time, type of sampling, and laboratory procedures.

To optimize the application of genetic tests in clinical practice, we need to discuss (1) the genetic conditions related to infertility, including the common and rare ones that are case appropriate; (2) the diagnostic strategies in families at risk of known monogenic disease transmission; and (3) the impact of PGT in the optimization of ART techniques.

Genetic tests in the identification of the causes of infertility

It has been estimated that every healthy subject is a carrier of 5/8 genetic alterations associated with recessive genetic disorders; therefore, even in the absence of specific symptoms, family planning and reproduction can be risky. Moreover, it has been reported that almost 50% of infertility cases are related to genetic disorders.

Male genetic infertility

Genetic factors have been found in all the etiological categories of male fertility (pre-testicular, testicular and post-testicular): OMIM (Online Mendelian Inheritance in Man) reports more than 200 genetic conditions related to male infertility, ranging from the most common clinical presentations of infertility to the rarest complex syndromes in which signs and symptoms are beyond the reproductive problems. In most cases, infertility is only one of the clinical signs of a complex syndrome; on the contrary, in some genetic conditions, infertility is the main phenotypic feature.

Today, the presence of alterations in the semen analysis is the first indication for genetic tests, particularly in cases of severe oligospermia (<5 million/ml) (further parameters are hormonal levels, malformations, recurrent abortions, and family history). Interestingly, a recent study by Oud et al. highlighted how the number of genes that are definitively linked to the more common phenotypes of oligozoospermia or azoospermia remains limited (30%); the other half are genes involved in teratozoospermia, although the monomorphic forms of teratozoospermia are extremely rare (1). Genetic disorders related to male infertility include whole chromosomal aberrations (structural or numerical), partial chromosomal aberrations (i.e., microdeletions of the Y chromosome) and monogenic diseases. In particular, abnormalities in sex chromosomes usually have a greater impact on spermatogenesis, while mutations affecting autosomes are more related, for example, hypogonadism, teratozoospermia or asthenozoospermia and to familial forms of obstructive azoospermia.

Currently, the main genetic tests routinely used for the diagnosis of male infertility are the karyotype, the study of chromosome Y microdeletions, and the analysis of the CFTR gene. It must also be considered that the role of de novo mutations should be further investigated, especially in light of what happens for Klinefelter syndrome and AZF deletions that occur almost exclusively de novo (1). Therefore, to improve and personalize the entire diagnostic–therapeutic pathway of male infertility, targeted genetic tests should be performed in the presence of specific clinical signs and symptoms: (1) for diagnostic purposes, (b) during clinical decision-making to establish the most appropriate ART strategy (for example, in the presence of deletions of the AZFα and AZFb regions, the possibility of sperm recovery using testicular biopsy is extremely low), and (c) for prognostic purposes (to establish the risk of transmitting the pathology and plan a prenatal or preimplantation diagnostic procedures).

Whole chromosomal aberrations: The prevalence of chromosomal alterations varies from 1.05 to 17%, but it is 0.84% in newborns [109]. Structural chromosomal rearrangements are more common with respect to numerical abnormalities; this does not apply to sex chromosomes whose abnormalities, accounting for approximately 42% of all whole chromosomal aberrations, are represented by sex chromosome aneuploidies in 84% of cases and by structural rearrangements of chromosome Y in the remaining 16% of cases. Klinefelter syndrome (karyotype 47, XXX) is the most frequent type of sex chromosome aneuploidy detected in infertile men (2,3), the second is the rearrangement of the aZFc zone is responsible for male infertility. The aZF region includes three groups of genes (aZFa, aZFb and aZFc) that are most frequent gonosomal abnormality is Double Y syndrome or Jacobs syndrome, characterized by the presence of Y chromosome disomy (4,5). In addition to reduced reproductive potential, carriers of chromosomal abnormalities have an increased risk of abortion or generate a child with an abnormal karyotype.

Partial chromosomal aberrations: Microdeletions in the long arm of the Y chromosome (Yq), named the AZF (Azoospermia Factor) region, have been found in 8–12% of azoospermic men and 3–7% of oligospermic men, resulting in the most common molecular genetic cause of male infertility. The AZF region includes three groups of genes (AZFa, AZFb and AZFc) that are most responsible for spermatogenesis, so partial or complete deletions in this area may impair reproductive capacity. Indications for AZF deletion screening are based on sperm count (<5 x 106 spermatozoa/ml) associated with primary testicularopathy, and IC50 is required to overcome infertility. Male offspring will carry the same father’s Yq microdeletions or even a worse one; therefore, genetic counselling is mandatory (6). Parents should be aware of the risk of having a child affected by Turner’s risk of having Turner’s syndrome (45, XO) or other phenotypic anomalies associated with sex chromosome mosaicism.

The rearrangement of the AZFc region is responsible for 60% of all Yq microdeletions (6). The AZFc region (3.5 Mb) contains several copies of five repeat elements (b1, b2, b3, b4, and gr), whose similarity and large size predispose an individual to a relatively high incidence of de novo
deletions via homologous recombination. The most common is the loss of the whole b2/b4 region, which includes the DAZ family (Deleted in Azoosperma) and leads to spermatogenesis deterioration.

Single gene mutations: Although thousands of genes are involved in male infertility, today, only a handful of genetic diseases are routinely investigated (e.g., cystic fibrosis).

Female genetic infertility

In contrast to male infertility, little is known about the genetic bases of female infertility. Accordingly, fewer specific tests are routinely recommended to infer fertile females to investigate the presence of chromosomal disorders or single-gene defects related to their clinical phenotypes. To date, genetic tests are mainly used for patients with POI, limited to chromosomal aberrations and FMRI premutations.

Whole chromosomal aberrations: Considering that chromosomal disorders significantly impact fertility and the miscarriage risk, karyotype analysis is always advisable (7). The most clinically important structural disorders in infertile females are translocations, both reciprocal (exchange of two terminal segments from different chromosomes) or Robertsonian (centric fusion of two acrocentric chromosomes) responsible for blocks of meiosis and structural alterations of the X chromosome. Patients with reciprocal translocations are at a significantly increased risk of infertility, including hypogonadotrophic hypogonadism with primary or secondary amenorrhea or oligomenorrhea. The balanced rearrangements can give rise to gametes in which the genetic information is unbalanced and can thus become a cause of infertility or multiple miscarriage.

Women with a normal karyotype produce a variable percentage of oocytes with chromosomal abnormalities due to errors occurring during crossing-over and/or meiotic nondisjunction. The three main classes of abnormalities are 45X, trisomy and polyploidy. It is well known that these events increase with maternal age. It is possible to analyze gametes or embryos while undergoing ART thanks to PGT.

Fragile X syndrome: Fragile X syndrome is an autosomal dominant genetic disorder caused by the presence of over 200 repetitions of the CGG triplet sequence in the FMR1(Fragile X Mental Retardation 1) gene or by a deletion affecting the FMR2 (Fragile X Mental Retardation 2) gene. Carriers of the female FMR1 premutation (when the number of CGG repeats falls between 55 and 200) or FMR2 microdeletion show menstrual dysfunction, diminished ovarian reserve, and premature ovarian failure. The most common genetic contributors to POI are X-chromosome-linked defects. Molecular approaches in the identification of genetic diseases that are transmissible to offspring (The ACOG has issued standard recommendations for ethnic and general population genetic screening in couples based on reproductive age. Testing is available for more than 2000 genetic disorders, including common diseases, such as sickle-cell anaemia, cystic fibrosis, and spinal muscular atrophy, or more complex conditions, such as mental retardation and congenital heart disease.

Molecular approaches for the optimization of art techniques: Human embryos that are developed in vitro show a great deal of acquired chromosomal abnormalities; for this reason, PGT for aneuploidy (PGT-A) has been developed to select euploid embryos that are suitable for transfer. PGT-A is primarily indicated for couples with advanced maternal age, recurrent implantation failure, recurrent abortions, or severe male infertility. Randomized studies and meta-analyses have shown that the PGT-A technique does not increase the live birth rate but decreases the miscarriage rate and increases the efficiency of IVF techniques.

Currently, the most commonly used technique is NGS. Literature data confirm that NGS can be successfully applied to the diagnosis of a variety of genetic abnormalities, even in single cells isolated from human embryos following WGA, and has numerous advantages over the technologies traditionally used for PGT-A. Currently, both the entire diagnostic pathway and the effectiveness of genetic analysis for infertility suffer from an approach that is ineffective: only a few genetic variables are studied, each through a specific molecular diagnostic procedure. This makes the process of genetic investigation fragmented and cumbersome, with a negative impact on the couple, in addition to the psychological distress caused by infertility. However, recent developments in new sequencing technologies have made it possible to conduct one or more tests into a single NGS-based analysis, thus reducing diagnostic costs and time. The European Society of Human Genetics (ESHG) and the ESHRE have recently issued a recommendation for the development and introduction of extended carrier screening (8).

Reproductive specialists have the task of evaluating infertile couples by considering both their general and reproductive health, since the relative conditions of comorbidity can influence their reproduction.

References:

Ultrasound is the backbone of modern obstetrics and gynaecology practice. Recent technological breakthrough in diagnostic ultrasound, including the advent of color Doppler, power Doppler, three dimensional imaging have led ultrasound to surpass all expectations. Gynecologic sonography is a viable, well developing entity. It is able to accept new challenges and incorporate them into the diagnostic process. Novel sonographic methods enable us to perform gynecologic diagnosis more exactly.

Trans-vaginal Sonography is fundamental part of pelvic ultrasound examinations because of the use of higher-frequency transducers with better resolution, examination of patients who are unable to fill their bladder, examination of obese patients, better distinction between adrenal masses and bowel loops and better characterization of the internal characteristics of a pelvic mass. However, **Trans-Abdominal Sonography** continues to be the mainstay when structures are high in the pelvis, out of the field of the TVS probe, in pediatric patients, and in those who have difficulty tolerating TVS.

Color and spectral Doppler Sonography allows for the assessment of normal and pathologic blood flow. Doppler ultrasound can distinguish vascular structures from non vascular structures, such as dilated fallopian tubes or fluid filled bowel loops. Color Doppler flow imaging (CDFI) expands conventional duplex sonography by providing additional capability. Power Doppler provides further increased sensitivity for flow detection.

Three-Dimensional Multiplar Sonography, performed using trans-vaginal transducer has been shown to be extremely useful in evaluating the Müllerian abnormalities of uterus, abnormal position of intrauterine device, relationship of uterine lesions to the endometrium. 3-D / 4-D USG has improved its functions with high definition live (HD live) technology and furthermore, great advances of ultrasound technology have produced new applications and HD live videos.

Sonohysterography provides more detailed evaluation of the endometrium or submucosal myometrium lesions by instillation of sterile saline or gel infusion into the endometrial cavity under ultrasound guidance. This distends the cavity, separating the walls of the endometrium. The most common indication for SHG is
abnormal uterine bleeding in both premenopausal and postmenopausal women.

Leiomyoma

Diagnostic Features On USG

- Heterogeneously enlarged uterus with lobular contour.
- Typically focal, well defined, round, sharply marginated, hypoechoic lesion within the myometrium or attached to it, often showing shadows at the edge of the lesion and/or internal fan-shaped shadowing.
- Leiomyma can be hypo, iso or hyperchoic but majority are hyperechoic. Small leiomymas are usually homogenous whereas those larger than 3 cm in diameter are often heterogeneous.
- Surrounding myometrium can become compressed and form a pseudocapsule.
- Edge refraction at the interface of the leiomyoma with the normal surrounding myometrium may help to identify an isoechoic leiomyoma.
- The Venetian blind artifact (shadows) - a sonographic finding typically associated with adenomyosis can also occur in uterine fibroids. This is believed to be caused by the transitional zone between apposed tissues of different acoustic properties such as fibrous tissue and smooth muscle.
- Degeneration may result in edema with cystic spaces, echogenic hemorrhagic areas, and dystrophic calcification. The calcifications can be curvilinear and peripheral or clump like and will demonstrate dense posterior shadowing.
- When one encounters a hyperchoic leiomyoma, lipoleiomyoma should be considered.

In order to assess the vascularization of the fibroids, color Doppler is used.

Transvaginal USG

- **Heterogeneity**
- **Cystic spaces**
- **Hypervascularity**
- **Posterior shadowing**

Diagnostic Features on Color Doppler

- Flow on color Doppler is generally increased with increased number of tortuous vessels penetrating myometrium.
- Because of its USG image (myometrial heterogeneity and subendometrial echogenic nodular and linear striation gives an appearance similar to chronic liver parenchymal disease. Hence, also known as "cirrhosis of the uterus".

Vascularity

Flow on color Doppler is generally increased with increased number of tortuous vessels penetrating myometrium. Because of its USG image (myometrial heterogeneity and subendometrial echogenic nodular and linear striation gives an appearance similar to chronic liver parenchymal disease. Hence, also known as "cirrhosis of the uterus".

Elastography: it is a non-invasive method in which stiffness or strain images of soft tissues are used to detect or classify tumors. Real time elastography produces an instantaneous color map that precisely delineates the fibroids, thus overcoming the limitations of conventional ultrasound.

FIBROID ELASTOSCANS

- **Adenomyosis**
 - It may be useful to categorize USG findings into these groups that mirror the histological findings:

- "**Adeno**: ectopic endometrial glands"
 - Subendometrial echogenic linear striations and/or nodules, extending from endometrium and into inner myometrium.
 - Hypoechoic islands (Venetian blind and rain shower appearance).
 - Irregular endometrial-myometrial junction.
 - Tiny (1-5 mm) subendometrial cysts reflecting glands filled with fluids.
 - Cystic striations.

- "**Myosis**: muscular hyperplasia +/- hypertrophy"
 - Focal or diffuse myometrial bulkiness which may be asymmetric typically of fundal region and posterior wall.
 - Focal lesions have relatively indistinct borders.
 - Asymmetric myometrial thickening.
 - Thickening of the transition zone can sometimes be visualized as a hypochoic halo surrounding the endometrial layer of >= 12 mm thickness.
 - Swiss cheese appearance due to area of fracture.

Vascularity

Flow on color Doppler is generally increased with increased number of tortuous vessels penetrating myometrium. Because of its USG image (myometrial heterogeneity and subendometrial echogenic nodular and linear striation gives an appearance similar to chronic liver parenchymal disease. Hence, also known as "cirrhosis of the uterus".

Transvaginal sonography of adenomyosis. Solitary focus of adenomyosis localized close to endometrium in upper left image, while multiple cystic structures visualized within all three layers of the myometrium typical of severe adenomyosis.

Transvaginal USG of a calcified fibroid

Elastography

- **Moderate to high impedance blood flow signals are detected at the periphery of adenomyotic lesions.**

Mullerian Duct Anomalies

- The prevalence of congenital anomalies of the reproductive tract is estimated to be as high as 7% in the female population. The fused caudal end of two Mullerian duct (paramesonephric) form uterus, cervix and upper two thirds of vagina. Arrested development of Mullerian ducts and/or failure of fusion or resorption of median septum results in various forms of Mullerian duct anomalies.

Three-dimensional (3D) techniques, USG may provide diagnostic accuracy similar to MRI. Imaging uterus in coronal plane provides information about fundus which is vital in characterizing various subtypes of abnormalities. Better to carry it on during secretory phase when endometrium is thick.

The coronal view of uterus is important for many Mullerian anomalies particularly septate uterus. Using the 3-D TVS reconstructed coronal view of the uterus, one should evaluate the external uterine fundal contour. If fundal myometrium is outwardly convex or has an inwardly concave indentation of less than 1 cm, the distinction narrows to septate verses arcuate uterus.

Suggested criteria for diagnosis of an arcuate uterus are an angle greater than 90 degrees at the end point of the fundal indentation or less than 1 cm indentation of myometrium into endometrium. If indentation is greater than 1 cm, then distinguish between bicorneate uterus and uterus didelphys. In bicorneate uterus, the two endometrial cavities join at the same point usually just above the cervix. There can be either one cervix (bicornis unicollis) or two cervixes (bicornis bicornis). In uterus didelphys, there are two separate uterine horns and two cervices. Arrested development of one Mullerian duct
results in unicornuate uterus that is easily diagnosed by 3D ultrasound as banana shaped configuration.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Bicornuate</th>
<th>Septate/Septate</th>
<th>Arcuate</th>
</tr>
</thead>
<tbody>
<tr>
<td>External countour</td>
<td>Concave</td>
<td>Flat/Convex</td>
<td>Flat and broad/Convex</td>
</tr>
<tr>
<td>External Fun-</td>
<td>>1 cm</td>
<td>Ab-</td>
<td>Absent/<1cm</td>
</tr>
<tr>
<td>d Cleft</td>
<td></td>
<td>sent/<1cm</td>
<td><1cm</td>
</tr>
<tr>
<td>Intercornual</td>
<td>>105 0</td>
<td>>750</td>
<td>>900</td>
</tr>
<tr>
<td>angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercornual</td>
<td>>4cm</td>
<td><4cm</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial Endo-</td>
<td>Convex</td>
<td>Flat/Acute</td>
<td>Flat/obtuse</td>
</tr>
<tr>
<td>metrial Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In cases of uterine hypoplasia, one may not be able to perform TVS and so MRI may be needed.

Virtual Hysterosalpingography: Recently virtual HSG has appeared. The technique consists of a traditional HSG obtained by using a multidetector CT technology and making millimeter cuts of the area of interest. After doing this, all the information is processed by a software that performs three-dimensional virtual reconstructions. Intrauterine adhesions are better visualized during menstruation when intracavitary fluid outlines them or following sonography.

Abnormalities Of Fallopian Tubes

With careful TVS examination the normal fallopian tube is an undulating echogenic structure approximately 8 to 10 mm in width, running posterolaterally from the uterus to lie within the posterior cul-de-sac near the ovary. The lumen is not seen unless it is fluid filled.

Fallopian tube pathology is discerned by evaluating the wall of the tube, the luminal content, the tubal motility, as well as its relation with the surrounding pelvic structures.

Intrauterine Adhesions

The sonographic diagnosis is difficult unless fluid is distending the endometrial cavity. The endometrium usually appears normal on trans-abdominal and trans-vaginal sonograms. Infection with tuberculosis may also cause uterine adhesions.

Irregular hyperechogenic bridges visualized within the central part of the uterine cavity in a patient with secondary amenorrhoea following dilatation and curettage. Intrauterine adhesions do not display increased vascularity on color Doppler examination.

> A mixed picture of uterine endometrium is seen. No endometrium is seen in some part whereas normal endometrium in other part.
> Integrity of the endometrial layer can be assessed including disruptions to the endometrial-myometrial junction.
> Adhesions may be seen trans-vaginally as irregularities or a hypoechoic bridge like band within the endometrium.
> Adhesions are seen as bands of myometrial tissue traversing the endometrial cavity and adjoining the opposing uterine walls.
> Mild adhesions appear typically as mobile, thin echogenic bands bridging a normally distensible endometrial cavity with pockets of fluid trapped between them.
> As severity of adhesions increases they appear as thick, broad bridging bands.
> Intrauterine adhesions do not display increased vascularity on colour Doppler.

In cases of uterine hypoplasia, one may not be able to perform TVS and so MRI may be needed.

Virtual Hysterosalpingography: Recently virtual HSG has appeared. The technique consists of a traditional HSG obtained by using a multidetector CT technology and making millimeter cuts of the area of interest. After doing this, all the information is processed by a software that performs three-dimensional virtual reconstructions. Intrauterine adhesions are better visualized during menstruation when intracavitary fluid outlines them or following sonography.

Abnormalities Of Fallopian Tubes

With careful TVS examination the normal fallopian tube is an undulating echogenic structure approximately 8 to 10 mm in width, running posterolaterally from the uterus to lie within the posterior cul-de-sac near the ovary. The lumen is not seen unless it is fluid filled.

Fallopian tube pathology is discerned by evaluating the wall of the tube, the luminal content, the tubal motility, as well as its relation with the surrounding pelvic structures.

Virtual Hysterosalpingography:

Recently virtual HSG has appeared. The technique consists of a traditional HSG obtained by using a multidetector CT technology and making millimeter cuts of the area of interest. After doing this, all the information is processed by a software that performs three-dimensional virtual reconstructions. Intrauterine adhesions are better visualized during menstruation when intracavitary fluid outlines them or following sonography.

Abnormalities Of Fallopian Tubes

With careful TVS examination the normal fallopian tube is an undulating echogenic structure approximately 8 to 10 mm in width, running posterolaterally from the uterus to lie within the posterior cul-de-sac near the ovary. The lumen is not seen unless it is fluid filled.

Fallopian tube pathology is discerned by evaluating the wall of the tube, the luminal content, the tubal motility, as well as its relation with the surrounding pelvic structures.
Cogwheel sign, an anechoic "cogwheel-shaped" structure visible in the cross section of the tube with thick walls, seen mainly in acute disease; no vascularization to moderate vascularization) with no flow inside the papillary projection.

C. Avascular marginal echogenic nodules

The appearance of an endometrioma may be similar to a hemorrhagic ovarian cyst because both are cystic masses that contain blood of variable age. However, a hemorrhagic cyst more frequently demonstrates a reticular internal pattern and is more frequently associated with free fluid in the cul-de-sac. A hemorrhagic cyst will resolve or show a significant decrease in size over the next few menstrual cycles, whereas endometriomas tend to show little change in size and internal echo pattern. Calcification is occasionally present in an endometrioma and misdiagnosed as a dermoid.

Ultrasound, is the preferred imaging modality in the study of the female pelvis, and provides information of basic importance in detecting and characterizing pelvic masses of uterine, ovarian, or adnexal origin, providing also criteria useful in predicting their benign vs malignant nature. Its use has decreased the need for more invasive procedures in women and allowed significant advances in their management.

References

When 3D USG is applied, true, spatial position and shape of hydrosalpinx is clearly visible. By using 3D volume sections it is possible to visualize the torturous structure and contiguous spread of hydrosalpinx.

Endometrioma
Endometriomas have a variety of appearances, from an anechoic cyst to a solid-appearing mass caused by the degradation of blood products over time.

> The characteristic sonographic appearance is that of a well-defined, unilocular or multilocular, predominantly cystic mass containing diffuse, homogenously, low-level internal echoes (ground glass appearance).

> The low-level internal echoes may be seen diffusely throughout the mass or in the dependent portion.

> Occasionally, a fluid-fluid level may be seen.

> Small, linear, hypechoic foci may be present in the wall of the cyst, likely caused by cholesterol deposits accumulating in the cyst wall.

> On Doppler USG, colour score between 1 and 3 (i.e.

> Colour Doppler can depict movement of the liquid component when tubal content moves and changes the position compressed by vaginal probe. When colour is turned on, hydrosalpinx remains black and white, with specs of colour only on deliberate probe movement.

> "beads on a string" sign, hypechoic mural nodules measuring 2 to 3 mm on cross section of the fluid-filled distended tube, caused by degenerated and flattened endosalpingeal fold remnants and seen only in chronic disease; and

> Incomplete septa, hypechoic septa that originate as a triangular protrusion from one of the walls, but do not reach the opposite wall, seen frequently in both acute and chronic disease and not discriminatory.

Patel et al. found that the presence of a tubular fluid filled mass with diametrically opposed indentations in the wall ("waist sign") had the highest likelihood ratio in discriminating endosalpingeal cysts from other adnexal masses.

The low-level internal echoes may be seen diffusely throughout the mass or in the dependent portion.

> Endometriomas have a variety of appearances, from an anechoic cyst to a solid-appearing mass caused by the degradation of blood products over time.

Endometrioma
Endometriomas have a variety of appearances, from an anechoic cyst to a solid-appearing mass caused by the degradation of blood products over time.

Diagnosing Hyperandrogenism and Hyperinsulinemia

Diagnosis of Hyperandrogenism
Hyperandrogenism is a medical condition characterized by high levels of androgens in females. It is established that androgens incoming from both the ovary and the adrenal are the underlying sources of hyperandrogenemia in PCOS women. Because in about 70% of cases it is poly cystic ovary syndrome (PCOS). Other causes include adrenal hyperplasia, Cushing's disease, certain types of cancers, and certain medications.

Hyperandrogenism most often diagnosed by checking for signs of hirsutism according to a standardized method that scores the range of excess hair growth.

- Checking medical history and a physical examination of symptoms are used for an initial diagnosis.

- Patient history assessed includes age at the larche, adrenarche, and menarche; patterns of menstruation; obesity; reproductive history; and the start and advancement of hyperandrogenism symptoms.

- Patterns of menstruation are examined since irregular patterns may appear with hirsutism.

- A laboratory test can also be done on the patient to evaluate levels of FSH, LH, DHEAS, prolactin, 17OHP, and total free testosterone in the patient’s blood. Abnormally high levels of any of these hormones help in diagnosing hyperandrogenism.

Diagnosis of Hyperinsulinemia
Hyperinsulinemia, is a condition in which there are excess levels of insulin circulating in the blood relative to the level of glucose. While it is often mistaken for diabetes or hyperglycemia, hyperinsulinemia can result from a variety of metabolic disease and conditions

1. The cut off value of HBA1C>6, in high risk group of infertility patient – like PCOS, obesity, advancement age or known case of DM

2. ORAL GTT – different organization recommend 75 to 100 g loaded dose of glucose followed by 1 hr, 2 hr, 3 hr – glucose estimation and following table suggesting the cut off value to be considered as pre diabetic or diabetic condition.

This test should be recommended to infertile couple where RBS / average blood sugar > 140 mg/dl (HBA1C – 5.8) or FBS > 100 mg/dl
Hypertension and Insulin Resistance

Researchers who wish to use model-derived estimates of insulin resistance (HOMA-IR) may need to consider the use of glucoseclamp, hyperglycaemic clamp, and intravenous glucose tolerance test (acute insulin response, minimal model), and the oral glucose tolerance test.

- Test for insulin resistance.
- Normal HOMA-IR value of healthy human ranges from 0.5 – 1.4
- <1.0 indicates early insulin resistance
- >1.9 indicates early insulin resistance

A word of caution: Among women whose tubes were found to be patent using HSG, 18% were found to have tubal obstruction or peritubal adhesions using laparoscopy and a further 34% were found to have endometriosis and/or fibroids. However, the detection and treatment of pathology missed by HSG did not increase live birth rates.

HYSOSY Compared with Laparoscopy and Chromopertubation

Evaluative studies of HyCoSy showed good statistical comparability and concordance with HSG and laparoscopy combined with dye. HyCoSy is well tolerated and can be a suitable alternative outpatient procedure. HyCoSy using contrast agent Infoson appears to be more efficient than saline solution in detecting tubal obstruction.

Saline Infusion Sonohysterography (SIS)

Saline infusion sonohysterography (SIS) or saline ultrasound uterine scan uses a small amount of saline infused into the uterus that allows the endometrium to be clearly seen on an ultrasound scan. Saline infusion sonohysterography (SIS or SHG) is a procedure to evaluate the uterus and the shape of the uterine cavity using ultrasound and sterile fluid. The ovaries are also seen at the time of SHG. The purpose is to detect any abnormalities.

SHG can be done to investigate conditions such as abnormal uterine bleeding, infertility, and recurrent miscarriage. SHG can also be performed to see the structure of the uterus. This may be done in women with congenital abnormalities of the uterus, before and after surgery on the uterus, or to detect problems that appear later in life such as polyps or suspected scar tissue inside the uterus. SHG may also help check uterine abnormalities found during a routine ultrasound.

Method of SIS

SIS is usually done postmenstrually. The procedure begins with a TVS and then a narrow catheter is placed through the cervix into the uterine cavity. The ultrasound examination is continued while sterile saline is put into the uterus. The saline solution fills the uterus, helping to outline the uterine walls and cavity. This shows abnormalities such as fibroids, polyps, or scar tissue inside the uterus.

Results

SIS had sensitivity of 91%, specificity of 76% positive predictive value of 95%, negative predictive value of 66%, and an accuracy of 89% in evaluating tubal patency. Further, SIS showed sensitivity of 83.3%, specificity of 60%, PPV of 75%, NPV of 75%, and accuracy of 72% in detecting pelvic pathology. In a low-resource country like India with a huge burden of subfertile women population, SIS can prove to be a useful tool in the initial workup of infertility patients with better compliance, low cost, and better results in a single visit.

References

Diagnostic Hysteroscopy In Infertility

DR SWATI VERMA

Secretary, Greater Chandigarh Chapter
Senior consultant, Jindal IVF Center, Chandigarh

Hysteroscopy is a commonly performed procedure to diagnose and treat the pathologies in the uterine cavity. The initial work-up of the infertile couple include investigations for general well being, endocrine profile, documentation of ovulation, tubal patency, as well as semen analysis. Transvaginal sonography (TVS), hysterosalpingography (HSG) and saline infusion sonography (SIS) are the first line investigations widely used to assess uterine cavity and its pathologies. Hysteroscopy, since it enables direct visualization of the uterine cavity and its relevant pathological disorders as well as the treatment of any detected abnormality at the same time, is the gold standard technique for uterine factor evaluation. There is no doubt in benefits of hysteroscopy in cases of known intrauterine pathologies e.g. Intrauterine adhesion, endometrial polyp, leiomyomas bulging into uterine cavity, infertility associated with abnormal uterine bleeding, abnormal endometrial thickening, suspicion of endometrial hyperplasia or malignancy. Other widely accepted indications for hysteroscopy in infertile women are suspicion of congenital anomaly like uterus septum, unicornuate/bicornuate uterus or uterus didelphys. Second look for hysteroscopy post septal incision for unicornuate/bicornuate uterus or uterus didelphys. Other indications may be associated with abnormal uterine bleeding, infertility, pregnancy failure after IVF/ICSI and endometrial biopsy. It is difficult to diagnose pelvic adhesions and minimal endometrial abnormalities diagnosed by office hysteroscopy prior to in vitro fertilization. The test is performed in same sitting.

The importance of a pre-assessment of the uterus and ovaries in infertile women: a systematic review.

It is usually tested by hysterosalpingography or HyCoSy: a simple transvaginal 2D ultrasound is performed with simultaneous injection of contrast medium. It is usually tested by hysterosalpingography or hyCoSy: a simple transvaginal 2D ultrasound is performed with simultaneous injection of contrast medium. It is insufficient for predicting tubal patency for some patients with risk of pelvic adhesions, with a sensitivity of 0.10% and 83% and specificity between 50% and 90%.

Uterine factor evaluation. Hysteroscopy for treating subfertility

Diagnostic Laparoscopy In Reproductive Medicine

DR NYMPHAEA WALECHA

Executive member IFS
Consultant Reproductive Medicine & Infertility,
Fortis Hospital Shalimar Bagh

It has been more than 4 decades since the first IVF baby, reproductive medicine has witnessed advancements in not only investigations, imaging but also embryo culture procedures. The best techniques like HSG and trans vaginal ultrasonography are still offered in many medical centers and is widely taken a back seat with advancement in technology. It is more than a long time ago that the first IVF baby was born, the Fallopian tubes and their patency have been a subject of debate (2). There is still a lot of discussion on whether or not to perform a screening hysteroscopy before IVF and it can reduce the time-to-pregnancy and the need for ART.

References

Need of laparoscopy: Pitfalls with other screening tests: two factors that require assessment apart from ovulation and semen analysis are tubal patency and pelvic pathology.

Tubal Patency

It is usually tested by Hysterosalpingography or HyCoSy: it provides a morphological view of the uterine cavity, the Fallopian tubes, and their patency. According to a meta-analysis, HSG has a reasonable specificity (83%) but a low sensitivity (65%) to document patency of the Fallopian tubes. Also, it has been shown that HSG is insufficient for predicting tubal patency for some patients with risk of pelvic adhesions, with a sensitivity between 0.10% and 83% and specificity between 50% and 90%.

The prognostic significance of HSG and laparoscopy for fertility outcome was studied and published in a large prospective cohort study which showed that laparoscopy can be delayed after normal HSG for at least 10 months because of the very low probability of only 5% that bilateral tubal occlusion may be found.

Pelvic pathologies

Ultrasonography: A simple transvaginal 2D ultrasound is advised for evaluation of pelvic pathologies as initial work up. Endometrioma, leiomyomas, hydrosalpinges can be picked up with good sensitivity by TVS, however it is difficult to diagnose pelvic adhesions and minimal endometriosis by TVS. At the same time diagnosing and treating such pathologies may not increase the pregnancy rate. HSG can detect peritubal, specially distal adhesions, but the extent of tubal disease can only be seen by.
laparoscopy. Therefore, role of laparoscopy, especially in women whose normal screening tests suggest that pelvic pathology seem to be unlikely. However in following situations, laparoscopy may have a role

- Ovulation Induction: Before initiating ovulation induction there seems no role of laparoscopy if all screening tests are normal.

- There is Ovulation failure with oral ovulogens: Diagnostic laparoscopy can be considered in PCOS women doing can be considered depending upon case based scenarios.

- There has been Luteinised enraputic follicle: To diagnose and treat peri tubal adhesions usually in PID and endometriosis.

2. Intrauterine insemination

A. Before IUI: Diagnostic laparoscopy can be advised to couples with suspected minimal tubal abnormalities, unilateral tubal block with contralateral ovulation resulting in no pregnancy. Endometriomas with patent tubes to downstream the disease and improve the chances of pregnancy with ovulation induction and IUI combined.

B. After failed intrauterine insemination: To diagnose and treat mild endometriosis, peri tubal adhesions, pelvic adhesions in otherwise unexplained infertility couples, who have failed cycles of IUI, yet do not want or can’t afford to go for in vitro fertilisation (IVF)

3. In-Vitro Fertilisation: Pre IVF tubal delinking in women with hydrosalpinges has been useful to improve success rates. Ultrasound usually can pick up hydrosalpinx, but when in doubt, in woman with history of IVF failure, diagnostic laparoscopy with hysteroscopy can be offered.

Advantages

- A gold standard test to evaluate the pelvis, tubes and uterine cavity, simultaneously perform necessary corrective procedures in day care admission setting, diagnostic laparoscopy is the most informative test beyond doubt.

Disadvantages

- It is invasive, skill dependent, costly procedure with risk of surgical and anaesthetic complications. The utility of the information and its effect on success rate of infertility treatment is doubtful. A cost benefit analysis of IVF versus diagnostic laparoscopy favours IVF.

Pre-procedure counseling: Should include

- Detailed explanation of the procedure to be performed.
- Intended benefits
- Likelihood of finding a pathology and improvement in pregnancy rates with corrective procedure.
- Alternative treatment options
- Cost- benefit analysis compared to ART

Conclusion

Diagnostic laparoscopy is no more a test to which all infertility women should be subjected to, for screening tubal or pelvic factors causing infertility. Rather it should be reserved to women with suspected disease for confirmation and treatment or in otherwise unexplained cases where ART has failed.

References

Endometrial Biopsy – As A Diagnostic Modality In Infertility

Endometrium is the mirror of hypothalamus, pituitary and ovaries. If the fertilised ovum is to be implanted. Almost all functional disturbances involved in infertility result in morphological changes in the endometrium since hormone level fluctuate depending upon various biorythms, the histological examination of endometrial biopsy is the most reliable parameter for evaluating the cause of infertility and thus endometrial biopsy is one of the cardinal investigations in infertility. Endometrial biopsy is an office procedure that serves as a helpful tool in diagnosing various other uterine abnormalities also.

Indications for Endometrial Biopsy

- Abnormal uterine bleeding
- Postmenopausal bleeding
- Cancer screening (e.g., hereditary nonpolyposis colorectal cancer)
- Detection of precancerous hyperplasia and atypia
- Endometrial dating
- Follow-up of previously diagnosed endometrial hyperplasia
- Evaluation of uterine response to hormone therapy
- Evaluation of patient with one year of amenorrhea
- Evaluation of infertility
- Abnormal Papanicolaou smear with atypical cells favoring endometrial origin

Contraindications & Relative Contraindications for Endometrial Biopsy

Contraindications

- Pregnancy
- Acute pelvic inflammatory disease
- Clotting disorders (coagulopathy)
- Acute cervical or vaginal infections
- Cervical cancer

Relative Contraindications

- Morbid obesity
- Severe cervical stenosis

Endometrial biopsy a simple and convenient procedure gives important information regarding:

- It documents the secretory endometrium which is indirectly evidence that ovulation has occurred.

- To evaluate whether the maturity of the secretory endometrium is in phase (i.e consistent with menstrual cycle date) or out of phase (i.e luteal phase defect).

- As an adjunct to the monitoring of the efficacy of treatment for ovulatory failure and in the confirmation and typing of endometrial hyperplasia in women with persistent anovulatory cycle.

- For the diagnosis of genital tuberculosis and as a means of culturing the mycobacterium.

Procedure Pitfalls/Complications

- Inability of catheter to pass through cervix
- Cramping associated with the procedure
- Infection may occur following the procedure.
- The pathologist reports that the specimens have insufficient sample for diagnosis
- The Teratoma causes discomfort when applied to the cervix.

Infertility

Female infertility may occur due to disturbance involving any part or parts of genital system or due to the involvement of the central nervous system that control the ovaries hormonally. Endometrial biopsy in infertility is not only the simplest, quickest, cheapest and useful method of determining the occurrence of ovulation, also yields valuable supplementary information about the utero-ovarian endocrine relation. The biopsy should be taken within 2 to 3 days of the procedure, to allow full endometrial development; the tissue then reflects the entire progesterone output in that cycle, and is a bioassay of progesterone output.

Female infertility can be categorised into who fail to ovulate (anovulatory infertility) because of some defect at hypothalamic-pituitary-ovarian axis and those who ovulate (ovulatory infertility), but are infertile because of some lesion present in genital tract. The significance of detection of ovulation is therefore immense. Histological study of endometrium can be an effective screening test in infertility if done in premenstrual phase. Hormonal disturbances if present in the patients are reflected in the endometrium in the form of anovulatory cycle, inadequate proliferative phase, endometrium.

Proliferative endometrium - Widely spaced tubular-glands which exhibit mitotic activity

In clinical practice, the luteal phase defect (LPD) has been associated with infertility, recurrent abortions and miscarriage. The defect occurs in approximately 3% of the infertile population, but women with certain clinical entities seem to have a higher incidence of luteal phase inadequacy. Although controversy surrounds the method of diagnosis, the endometrial biopsy has been a reproducible and adequate means of providing histologic evidence of normal endometrial development and bioassay evidence of adequate progesterone output. A single progesterone measurement provides little information about luteal adequacy, and serial or even frequent plasma progesterone levels are difficult to justify in patients in whom only a 3% incidence of a defect can be documented.

Endometritis

Endometritis is a known cause of abnormal uterine bleeding, recurrent abortions and infertility. It is a subtle condition and difficult to diagnose. The diagnosis
Genital tuberculosis

Genital tuberculosis is one of the major causes for severe tubal disease leading to infertility. Its magnitude is underreported because the diagnosis is difficult and require invasive techniques.

Unlike pulmonary tuberculosis, clinical diagnosis of genital tuberculosis is difficult because in majority of cases, the disease is either asymptomatic or has varied clinical presentation. Mycobacterium tuberculosis is the etiological agent for tuberculosis. Fallopian tubes are involved in 90-100% cases, endometrium in 50-80%, ovaries in 20-30%. Tuberculosis of vulva and vagina is rare. In addition to the subtle presentation of the disease, the low sensitivity and specificity of routine diagnostic methods and the paucity of organism in clinical samples are the main factors for lower detection rate of genital TB. The diagnosis is made by detection of acid fast bacilli on microscopy or culture on endometrial biopsy or histopathological detection of epithelioid granuloma on biopsy. Polymerase chain reaction may be false positive and alone is not sufficient to make the diagnosis. Laparoscopy and hysteroscopy can diagnose genital tuberculosis by various finding. The diagnostic dilemma arises due to varied clinical presentation.

Granulomatous endometritis - Single granuloma is present within the endometrial stroma.

References

Basic Semen Analysis

Aspermia
- Absence of ejaculate
- Retrograde ejaculate

Colour
Semen normally is grayish white opalescent, it tends to get a yellowish tint as a man ages.
- Translucent color is associated with low or absent sperm count
- Deep yellow indicates pyospermia
- Pink or red discolouration indicates blood
- Yellow after taking high sulpher (garlic).
- Brown semen is a result of infection / inflammation of prostate gland.
- Any abnormal smell of purification or urine should be noted.

Viscosity (Assessing liquefaction)
- After ejaculation semen sample is coagulated and needs to be liquefied. Semen normally liquefies between 20 min from thick gel to liquid, NICE guidelines has considered 60 min within normal range.
- When semen sample is very viscous it may indicate a prostatic dysfunction (prostatic enzyme).
- To liquefy chromatypsin, bromelin or plasmin may be added.

PH
- Measured using pH meter or PH paper
- WHO criteria specify normal as 7.2-7.8, semen is the strongest buffer of body
- Seminal vesicle and vas deferens secretion is alkaline
- Prostatic secretion is acidic due to citric acid, proteolytic enzyme
- Acidic ejaculate indicate blockage of one or both seminal vesicles
- Basic pH may indicate infection.

Fructose level
Fructose level in semen may be analyzed to determine the amount of energy available to the semen for moving.
- WHO specifies a normal limit of 13 micro mol/ sample.
- Absence of fructose may indicate a problem with seminal vesicle.

Testing for Fructose: Pipette 5ml of resorcinol reagent in a test tube. 0.5ml of semen is added, mixed and placed in boiling water bath for 5 min, red color ppt. in 30 sec indicate presence.

Microscopic Examination

Sperm count
Sperm count is the concentration of sperm in man’s ejaculate. Total sperm count is the sperm count multiplied with volume. According to WHO 2010, 15 million sperm per milliliter is considered normal.

Oligospermia less than 15 million/ ml

Causes
- Mumps orchitis
- Prostatitis
- Hypopituitarism
- Hypogonadotrophic hypogonadism
- Estrogen producing tumors
- Drugs

Prostate a wet preparation for assessing microscopic appearance and sperm motility. Dilution required for assessing number.

Motility
WHO has a value of 40% and this must be measured within 60 min. of collection. The progressive motility value should be over 32% or it might indicate Asthenozoospermia a more specified measure is motility grade, where the motility of sperm are divided into four different grades-
- Grade A - Rapid progressive motility (grade 4)
- Grade B - slow sluggish progressive motility, travel in a curved / crooked motion (grade 3)
- Grade C - Non progressive motility do not move forward.(grade2)
- Grade D - immotile (grade 1)

Asthenozoospermia may be due to-
- Cold
- Radiation
• Spermicide pesticide
• Prolonged heat exposure
• Prolonged abstinence
• autoimmunity

Sperm morphology
Assessment of morphological character is important for complete evaluation of semen sample. For that, air dried smear is made from fresh semen sample and they are fixed and stained with suitable stains like Papanicolaou, Giemsa, Leishmann.WHO – sample more than 4% (5 percentile) is considered as normal

According to WHO
• normal sperm head is considered to be 3-5 micron in length
• 2-3 micron in width with perfect oval shape
• mid piece is about 1 micron in diameter with straight and regular outline, it must be aligned to longitudinal axis of head and should be 7-8 micron in length
• The tail must be slender, uncoiled and at least 45 micron in length
• Any sperm not meeting these criteria is considered abnormal.Percentage lower than 4% indicate teratozoospermia.

Normal stain of sperm takes–
• Sperm head cap light blue
• Nuclear post—dark blue
• Body & tail-red pink

Total motile sperm count– is the combination of sperm count , motility and volume , measuring how many million sperm in an entire ejaculate are motile.

Sperm Viability (Sperm Membrane Function)
If motility is < 40% viability it should be performed. The sperm membrane structure and function can be determined by evaluating sperm vitality and hypo-osmotic swelling test.

Sperm Vitality test- Sperm with intact membrane do not allow eosin stain to pass into sperm head and they appear white against dark background. When there is defect in the membrane they allow eosin to leak and they appear pink.

HOS test (Hypo-osmotic swelling test); when the sperm are exposed to hypo-osmotic solution , the sperm with intact membrane result in imbibing water which leads to coiling of tail. Dead sperm have no coiling of tail. According to WHO vitality should be more than 55%.

MAR (mixed antigloublin reaction)- Antisperm Antibodies test – The number of spermatozoa with adherent particles or cell is reflected. More than 50% spermatozooa clustered together suggests an immunological problem. Antibody are found to react with front of acrosome, post nuclear cap, tail piece. Agglutination points to immunological cause of infertility Antisperm antibody can occur in serum of male/female, seminal plasma, spermatozooa thus leading to decrease progressive motility, decrease ability to penetrate cervical mucus.Condition that lead to this are testicicular disease, autoimmune following vasectomy, repeated infection cryptorchidism, trauma,torsion.

Between 30-60 minures(Other microscopic evaluation)-Assessing peroxides positive cell if round cell is present
• Round cell—may be leukocyte or immature germ cell, if more than 1 round cell per high power field is seen it is necessary to differentiate between leukocyte and immature germ cell. While stained leukocytes show presence of brown granules, germ cell remain unstained.
• Epithelial cell from reproductive cell normally contaminate semen, but a high number is associated with infection.
• RBC is not the normal contaminant of semen, usually present in TB of seminal vesicles, rupture of blood vessels, infection of prostate, vitamin c deficiency.1

Lower Reference Limit (LRL) was established in the last manual of the WHO. If values are over the limit it does not guarantee a successful fertilization or an on-going pregnancy, but it does increase possibilities. The LRL has progressively been reduced due to social behaviors and new life habits as food, tobacco, environmental toxics etc. The reference values established in the 4th manual edition of the WHO compared with those in the 5th and last edition are shown in the board below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefication</td>
<td>Complete in 60 min</td>
<td>Complete in 60 min</td>
</tr>
<tr>
<td>Volume</td>
<td>2 ml</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Color</td>
<td>Opalescent white</td>
<td>Opalescent white</td>
</tr>
<tr>
<td>pH</td>
<td>7.2-7.8</td>
<td>> 7.1</td>
</tr>
<tr>
<td>Concentration</td>
<td>20 million</td>
<td>15 million</td>
</tr>
<tr>
<td>Progressive motility</td>
<td>50%</td>
<td>32%</td>
</tr>
<tr>
<td>Vitality</td>
<td>75%</td>
<td>58%</td>
</tr>
<tr>
<td>Morphology</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td>Leukocytes/ml</td>
<td>> 1 million</td>
<td>> 1 million</td>
</tr>
<tr>
<td>Mar test</td>
<td>< 30% sperm with bound</td>
<td><50% sperm with bound</td>
</tr>
</tbody>
</table>

References

Investigating Azoospermia

Sperm morphology

Investigating Azoospermia

Differentiation between spermatids and spermatozoa is difficult

To differentiate spermatids and spermatozoa

Sertoli cells and Sertoli – spermatid junction

Teratozoospermia

1. Pre-testicular azoospermia (2% of men with azoospermia, due to a hypohalamic or pituitary abnormality diagnosed with hypo-gonadotropic hypogonadism).
2. Testicular failure or non-obstructive azoospermia (49% to 93%). It is not always a complete absence of spermatogenesis, some men with testicular failure have reduced spermatogenesis (hypospermatogenesis), maturaration arrest or a complete failure of spermatogenesis noted with Sertoli-cell only syndrome).
3. Post-testicular obstruction or retrograde ejaculation: Some men have an ejaculation failure. They might have spinal cord injury, psychogenic failure to ejaculate or neurological damage.

Since discovery of ICSI a breakthroughs in the ARTs have allowed us to treat 98% of couples with male factor infertility. Using ICSI, it is now possible to produce a pregnancy with any live sperm (moving or not).

History and initial investigations for men with azoospermia

After at least 2 semen analyses have confirmed azoospermia, men should be investigated with a history, physical examination and laboratory tests and imaging studies. The history should include information about:

1. The infertility history, such as duration of infertility, whether the infertility is primary or secondary, any treatments to date, libido and sexual activity.
2. The general health of the man, specially check for the presence of diabetes, respiratory issues.
3. The history of proven / suspected genito-urinary infections.
4. Any exposure to agents which might have an adverse impact on spermatogenesis.
 • Medical agents like hormone /steroid therapy; antibiotics (sulphasalazine), alpha-blockers, 5 alpha-reductase inhibitors, chemotherapeutical agents.
 • Environmental factors like pesticides, excessive heat on the testicles;
5. The surgery of the reproductive tract (hydrocelectomies, varicocelectomies etc); and
6. The history of any genetic abnormalities in the patient or his family.

If the male has been exposed to any of the above agents, than he should be advised discontinue and the semen retested in 3 to 6 months. If the man has had a recent serious medical illness or injury or he has evidence of a recent reproductive tract infection, semen testing should be repeated at least 3 months following recovery from
the illness. Physical examination of genital area should be done. We need to check (size and consistency of the testis, presence and grade of varicoceles and palpable vas deferens).

Reduced semen volume Azoospermia:
If the semen volume is low (<1.5 ml) and documented on repeat testing, careful questioning should elicit whether this is an artifact (missed the container, difficulty providing specimen, etc.) or truly a low semen volume. Low semen volume could be due to:
1. Absence/abnormalities of the vas deferens/seminal vesicles,
2. Retrograde ejaculation, or
3. Failure of emission.

Testing the post-ejaculate urine should help to determine if there is retrograde ejaculation. Occasionally, an alpha agonist will convert retrograde into antegrade ejaculation. Diabetic men often have retrograde ejaculation or failure of emission. Physical examination will help to determine if the vas deferens is present in the scrotum and a trans rectal ultrasound (TRUS) will determine if the seminal vesicles and vas deferens close to the prostate are normal. If there is absence of the vas deferens and/or the seminal vesicle, then the man has about an 80% chance to carry a genetic mutation associated with cystic fibrosis. Checking for CF for men with bilateral absent vas deferens is Grade A recommendation.

Algorithm for differentiating the causes of normal semen volume azoospermia. FS H = follicle-stimulating hormone; LH = luteinizing hormone.

A number of authors report on the use of Inhibin B serum levels to determine testicular function. While Inhibin B levels are generally lower in those men with more severe testicular dysfunction and is undetectable in those with a Sertoli cell only pattern on testicular biopsy, Inhibin B levels in men with maturation arrest or hypop spermatogenesis patterns on testis biopsies may be identical to those found in men with full spermatogenesis. At present, serum inhibin B levels do not provide significant clinical benefit. (Level of evidence 3, Grade C recommendation). About 60% of men with azoospermia will require a testicular biopsy to provide a definitive diagnosis.

Failure to ejaculate: In men with a clear neurological cause no further investigations are required prior to treatment. Men with idiopathic failure to ejaculate sex therapist should be consulted.

Genetic investigations for men with azoospermia
All men with hypogonadotropic hypogonadism should be referred for genetic counseling as almost all of the congenital abnormalities of the hypothalamus are due to a genetic alteration. All men with absence or obstruction of the reproductive tract ductal structures are at an elevated risk cystic fibrosis. It is recommended that not only the man but his partner should be offered cystic fibrosis testing in this situation. If cystic fibrosis mutation present then genetic alteration is identified, then genetic counseling is suggested (Level of evidence 2, Grade B recommendation). All men with testicular failure should be offered karyotype and Y-microdeletion testing then referred for genetic counseling if an abnormality is identified (Level of evidence 1, Grade A recommendation).

Algorithm for the investigation of azoospermic men with low semen volume.

Obstruction of the ejaculatory duct is detected by TRUS and is usually accompanied by dilation of the seminal vesicles. If an ejaculatory duct obstruction is identified, the man has about a 25% chance to carry a genetic alteration associated with cystic fibrosis. Cystic fibrosis testing should be performed on all men with ejaculatory duct cysts.

Differentiating the causes of normal volume azoospermia:
As mentioned above, the categories of the etiology of azoospermia are:
1. Pre-testicular azoospermia (2%: hypothalamic or pituitary etiology)
2. Testicular failure or non-obstructive azoospermia (49% to 93%)
3. Post-testicular obstruction (7% to 51%: normal spermatogenesis but obstructive azoospermia).

The diagnosis of pre-testicular azoospermia is relatively uncomplicated. LH and FSH levels will be low and the testosterone levels will be either low or normal. Men with elevated FSH and LH and small testes bilaterally have non-obstructive azoospermia. However, men with normal levels of FSH and LH could have either non-obstructive or obstructive azoospermia. Unfortunately, there is no non-invasive method to differentiate obstructive from non-obstructive azoospermia in this group of men. A testicular biopsy is usually required to provide a definitive diagnosis (Fig 2).
CHAPTER Activities

A CME on "FertiMed" 2019 (20th October 2019) IFS Western UP Chapter

When you pick up your child you can tell the map of your own home beneath their hands, or smell the scent of your skin in the shape of his hair. There is an instinct in every woman to be a mother.

A CME on Workshop on "FertiMed' 2019 with the theme ‘Terminating infertility management' was organized by Department of Obstetrics and Gynecology, Teerthanker Medical College, Moradabad on 20th October 2019 under the aegis of IFS Western UP Chapter.

This prestigious event was inaugurated by Dr. Neeta Mohan, senior most President, Moradabad Obstetrics and Gynaecological Society. It was graced by renowned Obstetrician Gynaecologist from Aligarh, Meerut, Batali, Noida, Bhadohi and Moradabad. High spectrum of topics were discussed like follicular monitoring, present status of IVF setting up IUI lab, luteal phase support in IUI, optimizing its results, and when to stop IUI and think of IVF.

Dr. Dr. Neeta Mohan elaborated the modalities of ovulation induction protocols and its clinical practice. Dr. Priyanka Sudhakar, consultant gynaecologist from Delhi elaborated the guidelines about its management and more specifically the role of sperm DNA Fragmentation in Reproductive outcomes.

The CME program was organized by Dr. Sarbjeet, Dr. Shalini and Dr. Sarabpreet Singh. Workshop coordinator: Dr. Deepa Goel, Dr. Sarita Agrawal. Organizing secretary: Dr. Monica Verma and Dr. Ranjana. It was attended by 30 Gynaecologists and Embryologists. The aim was to increase the awareness on Male Infertility, focusing on newer modalities in IUI, relevant issues pertaining to male infertility were also highlighted. Talented young researches presented their papers and poster presentation competition was also held.

Academic sessions were followed by entertaining and rejuvenating cultural events prepared by organizing team and delegates.

Learning points:
1. Basics for ovarian stimulation in IUI and IVF cycles
2. Fine skills for endo-suturing
3. A very enthusiastic audience and in such large number with active participation in all sessions, gives the reason to promote many such basic workshops in future and give Jharkhand more importance in academic activities of IFS in future... Dr. Pankaj Talwar

IUI Workshop at Hotel Capitol Hill, Ranchi (12.08.2019) Jharkhand Chapter

List Of Organizing Committee: Secretary: Dr. Archana Kaimat, Joint Secretary: Dr. Jeeva R, Treasurer: Dr. Rajesh Prabhakar

Guest Speaker: Dr (Col) Pankaj Talwar (Delhi), Dr. Suparna Banerjee (Kolkata)

The pleasant sunny weather in the holy month of Sawan on 12th August, 2019 at Harpal Tiwana Hall at Patiala organized a conference on infertility updates and ART workshop on 22nd September, 2019 at Harpal Tiwana hall in Patiala organizing committee-chairperson: Dr. Bhandeekar Oobbi and Dr. Sunita Agrawal Organizing secretary: Dr. Monica Verma and Dr. Raniya Kaur. Joint organizing secretary: Dr. Shilpi, Dr. Chahil and Dr. Kaushal Singh, Singh Work shop co-ordinator: Dr. Deepa Goel, Lab co-ordinator: Dr. Sarbjeet Kaur, Dr. Sushree Goel, Dr. Neeta Kaur, Dr. Sarbjeet Singh, Dr. Leela Bhalla, Dr. Sruthi, Dr. Gaurav Kant, Dr. Sandeep Singh, Dr. Sumit Shukla, Dr. Shilpi Parihar and Dr. Shilpi Bhalla. IVF workshop co-ordinator: Dr. Prabhakar and Dr. Raniya Kaur. Around 70 delegates attended the workshop which included the postgraduate students from Rajendra Institute of Medical Sciences, Ranchi.

Learning point:
1. Clinical understanding of semen analysis (WHO 2010), male factor infertility
2. Methods of semen preparation for IUI
3. Evidence based practice in IUI

Comment from audience:
A very interesting and captivating workshop which gave everyone a chance to understand the very basis of IUI and semen analysis... Dr. Narayan Sinha

Very helpful for non-cumers in the field of infertility especially who wish to start IUI set-up... Dr. Banta Gohil

Comment from faculty:
A very enthusiastic audience and in such large number with active participation in all sessions, gives the reason to promote many such basic workshops in future and give Jharkhand more importance in academic activities of IFS in future... Dr. Pankaj Talwar
O- 280 Topic: “Evaluation of the hormone Dehydroepiandrosterone sulphate (DHEAS) as a potentially compelling ‘oocyte-related factor’ in mammalian oocyte activation: A paradigm shift”

O- 003 Topic: “Mapping the follicular fluid bio-molecular profile: Dynamic interactions set the algorithm for oocyte maturation, embryo development and successful outcomes in IVF cycles”

Poster-1
"Intra-Uterine Instillation Versus Subcutaneous Injection Of Granulocyte Colony-Stimulating Factor (G-Csf) Before Embryo-Transfer In Resistant Thin Endometrium In Ivf-Icsi Cycles: A Comparative Study”

Poster-2
“Letrozole versus Clomiphene Citrate for induction of ovulation in PCOS Infertile patients for IUI: a comparative study”

Poster-3
"Comparative results of IUI performed 24 hours and 48 hours after HCG-Trigger"
International Conference on Reproductive Medicine

Organizing Chairpersons
- Kersti Lundin
- Kuldeep Jain
- Rishma Dhillon Pai
- Carlos Califaz Jorge

Organizing Secretaries
- Hrishikesh Pai
- Gouri Devi
- Nandita Palshetkar
- K D Nayar

GRAND HYATT HOTEL, MUMBAI

Organised by
- European Society of Human Reproduction and Embryology
- Indian Fertility Society
- Indian Society for Assisted Reproduction
- In Association with Mumbai Obstetrics and Gynaecological Society

Conference Highlights
- First Joint conference of ESHRE, IFS & ISAR
- 30+ Leading Scientific Faculties from Europe.
- Experienced Scientific National Faculties from IFS & ISAR
- Hot meals for lunch and dinner.
- Ten, Including few Live Workshops
- Free communication with E- Posters / oral presentations
- An opportunity to meet and interact with leading national and international faculties
- Fun filled evening cultural programmes.
BECOME A CERTIFIED EMBRYOLOGIST

7th Embryology Preparatory Certification Course for ESHRE Exam

3rd, 4th & 5th December, 2019

Highlight’s:

- Renowned International & National Faculty.
- Opportunity to appear in Mock Exam similar to ESHRE exam.
- IFS course attendance certificate to all who appear in exams.
- IFS Embryology Certification to all who clear the exam.
- Will be highly beneficial in preparation of ESHRE Certification.

Eligibility:

- MBBS/Post graduate or MSc/PhD in Life Sciences.
- Experience of three years working at an IVF laboratory.

Payment accepted by – DD/ Cheques/ NEFT
Account Name : Indian Fertility Society
Account No. : 50562010067180 | IFSC code : ORBC0100179
Bank Name : Oriental Bank of Commerce | Branch : Connaught Place, New Delhi-110001
please draw your cheques / DD in favour of “Indian Fertility Society” payable at Delhi

For Further Information Contact:
Dr. Pankaj Talwar - Secretary General
IFS SECRETARIAT - 302, 3rd Floor, Kailash Building, 26, Kasturba Gandhi Marg,
C.P. New Delhi - 110001. Tel: +91 9899308083, 9810790063, 9667742015 (whatsapp)
E-mail: indianfertilitysocietydelhi@gmail.com Web: www.indianfertilitysociety.org
Register online at www.amity.edu

DIPLOMA IN CLINICAL ART (ASSISTED REPRODUCTIVE TECHNOLOGY) &
DIPLOMA IN CLINICAL EMBRYOLOGY

1 YEAR DIPLOMA PROGRAMMES WITH UNIQUE ADVANTAGES

- Includes monthly teaching modules along with CME conducted in reputed IFS centers under eminent ART and reproductive medicine consultants
- The Clinical ART Fellowship includes hands-on training in clinical ART procedures, ultrasound and endoscopic surgeries
- Fellows can avail travel and academic grants
- Clinical Embryology includes intensive practical training in embryology lab procedures
- Completely merit based selection of candidates for a limited number of seats

EXPLORE EXCITING CAREER OPPORTUNITIES IN INDIA AND ABROAD

Career opportunities range from jobs in Fertility Clinics in India and abroad, opportunities in private healthcare organisations and in the field of infertility treatment, and research-centric roles like embryonic studies research in reputed universities and research in the reproductive sciences.

20 SEATS EACH IN CLINICAL ART AND CLINICAL EMBRYOLOGY ALL OVER INDIA

ELIGIBILITY & ENTRANCE EXAMINATION SYLLABUS

DIPLOMA IN CLINICAL ART
Eligibility: Postgraduate in OBGYN (MD/DNB). Registered with the MCI / State Medical Council. The candidate must be a life member of IFS.

DIPLOMA IN CLINICAL EMBRYOLOGY
Eligibility: MBBS/Postgraduate in Medical Sciences or M.Sc./Ph.D in Life Sciences or Veterinary Sciences (Regular Course) from recognised institute in India.

Entrance Examination Syllabus: ICMR Guidelines, Basic Human Embryology, Human Cell culture, Genetics, TQM, Basic Semenology, Anatomy, Physiology & Pathology of Reproductive Biology.

Venue

IFS SECRETARIAT
302, 3rd Floor, Kailash Building,
26, Kasturba Gandhi Marg, CP, New Delhi-110001

VENUE

+91 9899308083
+91 11 40018184

Amity University, Sec-125, Noida (New Delhi NCR) | Tel: 98-160-26719, 98-105-66870 | www.amity.edu
With **Vitacover Gold**

Treat infertility & other Gynaecology Complication

In male infertility

CoQ10 Available as Trans CoQ10 form

- Improves sperm count, functional sperm concentration, motility & morphology

Methylcobalamin administration increases

- Sperm concentration 38.4%
- Sperm count 53.8%
- Sperm motility 50.0%

Methylcobalamin enhances the testicular functions, resulting in an increased output of motile sperm.

In

- Infertile couple
- Male Infertility
- Prostate Cancer

Pre-eclampsia & IUGR

Uterine Fibroid Tumours

Habitual & Spontaneous Abortion

Tackles complicated conditions naturally