Definition

It refers to twins, triplets and higher number of foetuses (quadruplets, quintuplets).

Incidence

The incidence of monozygotic twins is constant (4 per 1000 births). It is the incidence of dizygotic twins that varies and depends on ethnicity, maternal age, parity, use of fertility treatments etc. African countries have reported the highest incidence of dizygotic twins, while Asia has the lowest. Naturally occurring triplets births occur in 1 per 7000 to 10,000 births and naturally occurring quintuplets births occur in 1 in 600,000 birth. In India, incidence of twins is around 2 per 1000 births.
Dizygotic twinning: Twinning which occurs because of fertilization of two separate ova is called as dizygotic twinning (1.2%) [Fraternal twins]

Monozygotic twinning: Twinning in which a single fertilized ova subsequently divides into two identical structures is known as monozygotic twinning (0.4%) [Identical twins]

Outcome and incidence of the monozygotic twinning depends on the timing of division.

Etiology

Advanced age and parity
Race and ethnicity: Dizygotic twins are common in the Africans than Asians.
Genetics
Use of fertility drugs
ART

Types

- **Dizygotic twinning**: Twinning which occurs because of fertilization of two separate ova is called as dizygotic twinning (1.2%) [Fraternal twins]

- **Monozygotic twinning**: Twinning in which a single fertilized ova subsequently divides into two identical structures is known as monozygotic twinning (0.4%) [Identical twins]
Pathogenesis

- 0-72 hrs - Diamniotic Dichorionic twins, occurs in 29% of cases
- 4-7 days - Diamniotic Monochorionic twins, occurs in 70% of cases
- 8-12 days - Monoamniotic Monochorionic twins, occurs in 1% of cases
- 13 days-16 days (Incomplete division) - Conjoint Twins, extremely rare

Diagnosis

<table>
<thead>
<tr>
<th>History</th>
<th>Examination</th>
<th>Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Uterine height more than the period of gestation</td>
<td>Role of Ultrasound</td>
</tr>
<tr>
<td>Parity</td>
<td>Multiple fetal parts</td>
<td>- Diagnosis</td>
</tr>
<tr>
<td>H/O Fertility</td>
<td>Multiple fetal heart sounds</td>
<td>- Antenatal surveillance</td>
</tr>
<tr>
<td>Treatment</td>
<td>Striae gravidarum and Cholasma may be severely increased</td>
<td>- Determines amnionicity, chorionicity and zygosity.</td>
</tr>
<tr>
<td>Genetic</td>
<td>Race</td>
<td>- Chorionicity: Can be done as early as at 10-14 weeks</td>
</tr>
<tr>
<td>Exaggeration of common symptoms of pregnancy</td>
<td></td>
<td>Monochorionic: ‘T’ sign</td>
</tr>
</tbody>
</table>

Dichorionic: lambda sign ‘y’

Fig. 2: Pathogenesis of twins

- **MONOZYGOTIC TWINS**
 - FERTILIZED OVUM
 - TWO CELLS
 - TWO MORULAS
 - TWO BLASTOCYSTS
 - CHORION
 - DIAMNIONIC DICHORIONIC: 8% of all twins

- **DIZYGOTIC TWINS**
 - TWO FERTILIZED OVUL
 - UTERUS
 - IMPLANTATION SEPARATELY
 - IMPLANTATION TOGETHER
 - DIAMNIONIC DICHORIONIC: 72% of all twins

Chorionicity:
- Can be done as early as at 10-14 weeks.

Imaging:
- **Monoamnionic Monochorionic:**
 - Lambda sign
- **Diamniotic Monochorionic:**
 - T sign
- **Diamniotic Dichorionic:**
 - Lambda sign

Notes:
- The images illustrate the developmental stages of monozygotic and dizygotic twins, highlighting the differences in chorionic and amnionic divisions.
Management

• Early registration.
• Routine investigations.
• Early scan for dating and Chorionicity.
• Combined screening should be offered.
• Detailed anomaly Ultrasonography at 18-20 weeks.
• Fetal echocardiography at 19-21 weeks (risk of cardiac anomalies is higher in Monochorionic twins (2% in uncomplicated, 5% in TTTS).)
• Cervical length-by TVS at 20-24 weeks of gestation to evaluate the risk of spontaneous preterm delivery. Cut off value at this gestation is 25mm.
• Growth scan 4 weekly in Dichorionic twin and 2 weekly in Monochorionic twin.
• Regular ANC visits- 4 weekly till 28 weeks followed by 2 weekly from 28 weeks till 34 weeks and then followed by weekly visits (can be individualized according to complication).
• Antenatal steroids at 34 weeks.
• Biophysical profile:
 - Twice a week after 30 weeks for monochorionic monoamniotic twins.
 - Weekly from 34 weeks onwards for monochorinic diamniotic twin pregnancy.
 - 36 weeks onwards for dichorionic diamniotic twin pregnancy (can be individualized according to complication).
• Management of complications.

Problem statement

• The incidence of multiple pregnancy and delivery has increased dramatically over the past decades. In IVF, the usual practice of transferring two or more embryos to achieve higher pregnancy rates results in a high incidence of multiple births.
• In the World Collaborative Report on IVF figures for 2000 showed conventional IVF and ICSI twin rates were 26.9% and 26.2%, respectively, and triplet rates were 2.8% and 2.9%, respectively, for an estimated total of approximately 197,000 to 220,000 babies worldwide.5
• Twin gestation carry additional risks for both mother and offspring and extensive monitoring is required. [Table 1]
• Despite the substantial risks associated with multiple pregnancy, double embryo transfer (DET) during IVF treatment continues to be widely practiced.6 The embryo transfer practices differ worldwide due to variation in IVF regulation.
• IVF clinics in private sector are in a competitive environment. It means the perceived reputation of the clinic became closely related to its success rate per fresh IVF cycle.
• There is a common understanding among patients and health professionals that transfer of more than one embryo improves the success rate of IVF. Hence they neglect the harmful consequences of Twins.7
Strategies to reduce multiple births

- Another factor is the higher cost of IVF cycles which makes patient and her spouse reluctant to go for multiple IVF cycles so as to promote single embryo transfer.
- The cost of care for children born prematurely as a result of multiple births is also considerable. According to one study, the estimated neonatal cost to the UK’s National Health Service (NHS) for a twin is 16 times higher than that for a singleton baby.

Table. 1: Maternal, fetal, Neonatal Risks

<table>
<thead>
<tr>
<th>Maternal</th>
<th>Fetal</th>
<th>Neonatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preeclampsia</td>
<td>IUGR</td>
<td>Prematurity</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>Prematurity</td>
<td>LBW</td>
</tr>
<tr>
<td>Preterm labor, PROM</td>
<td>TTTS</td>
<td>Birth Asphyxia and RDS</td>
</tr>
<tr>
<td>APH</td>
<td>Conjoined Twins</td>
<td>Metabolic Complications</td>
</tr>
<tr>
<td>Anemia</td>
<td>Congenital malformation</td>
<td>NICU admissions</td>
</tr>
<tr>
<td>Surgical and Assisted delivery</td>
<td>Acardiac twin</td>
<td>Cerebral palsy and mental retardation</td>
</tr>
<tr>
<td>PPH</td>
<td>Vanishing twin(common with ART procedure)</td>
<td></td>
</tr>
<tr>
<td>Failed Lactation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placenta previa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maternal death if associated with other comorbid conditions.

Table. 2: ASRM Guidelines on Number of embryos to be transferred

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35</td>
<td>Euploid 1 1 1 1</td>
</tr>
<tr>
<td>35–37</td>
<td>Other favorable 1 1 ≤3 ≤4</td>
</tr>
<tr>
<td>38–40</td>
<td>All others ≤2 ≤3 ≤4 ≤5</td>
</tr>
<tr>
<td>41–42</td>
<td>Blastocysts Euploid 1 1 1 1</td>
</tr>
<tr>
<td></td>
<td>Other favorable 1 1 ≤2 ≤3</td>
</tr>
<tr>
<td></td>
<td>All others ≤2 ≤2 ≤3 ≤3</td>
</tr>
</tbody>
</table>

\(^a \) See text for more complete explanations.
\(^b \) Other favorable = Any ONE of these criteria: Fresh cycle expectation of 1 or more high-quality embryos available for cryopreservation, or previous live birth after an IVF cycle, HRT cycle: availability of unfertilized day-3 or day-6 blastocyst, euploid embryos, 1st HRT cycle, or previous live birth after an IVF cycle.

Please note: Justification for transferring additional embryos beyond recommended limits should be clearly documented in the patient’s medical record.

Other Scenarios

1. An additional embryo may be transferred if a patient with a favourable prognosis fails to conceive after multiple cycles with high quality embryo(s).

3. One embryo should be transferred in patients with coexisting medical condition to which multiple gestation can be an additional morbidity.

4. In case of transfer of embryos more than the recommended limits, counselling and justification must be documented on patient's permanent records.

5. There is insufficient data to recommend number of embryos transferred when the patient age > 43 yrs using her own oocytes. Caution should be exercised as the risk of multiple pregnancy is dramatically increased with advancing age.

6. Age of the donor should be used to determine the appropriate number of embryos to be transferred in donor cycles. For example, when the donor is <35 yrs of age, single embryo transfer should be planned.

How to promote eSET?

1. To select the embryo with maximum implantation potential by Preimplantation Genetic screening, Blastocyst culture and Time lapse.

3. Appropriate counselling about the health risks of multiple pregnancy and the merits of eSET.

4. IVF funding policies that support access to several fresh and frozen IVF cycles. In Europe, countries with higher rates of eSET, such as Belgium, Norway and Denmark, have generous IVF state funding arrangements.

5. Setting a multiple birth rate target for the IVF clinics as done in UK.

6. The laboratory conditions and techniques should be continuously refined to allow selection of a single developmentally-competent embryo more easily.

7. Birth per embryo transferred: this term should be given the status of 'the criterion of ART excellence'.

2. Embryo/Fetal reduction,

It is used to reduce the number of multiple births worldwide. The collaborative data have reported satisfactory outcome for the children and limited risks for the mother but this kind of intervention raises serious ethical and psychological problems. It may be indicated in cases of particularly high order multiple pregnancies but can never be justified as a method for reduction of twins.
References

Dr M Gouri Devi
President

Dr Pankaj Talwar
Secretary General

Contributor

Dr Niti Vijay
IVF Consultant

Dr Rupali
IVF Consultant
Executive Member
Chief Coordinator
Synapses - IFS

Dr Rhythm Ahuja
IVF Consultant
Co-coordinator
Synapses - IFS

IFS SECRETARIAT
302, 3rd Floor, Kailash Building
Kasturba Gandhi Marg, C.P, New Delhi-110001

+91 9667742015
+91 9899308083
+91 11 40018184
www.indianfertilitysociety.org
indianfertilitysocietydelhi@gmail.com
15th Annual Congress of Indian Fertility Society

FERTIVISION 2019
6-8 December
The Leela Ambience Hotel,
Gurugram, New Delhi, NCR | India

International Faculty

Dr. Arne Sunde
Norway

Dr. Ashok Agarwal
USA

Dr. E Balaji
Singapore

Dr. Edgar Mocanu
Ireland

Dr. Ephia Yasmin
UK

Dr. Gail Lavy
USA

Dr. Gabor Vahta
Australia

Dr. Jane Stewart
UK

Dr. Jayant G. Mehta
UK

Dr. Joanne Carwardine
UK

Dr. Jyotsna Pundir
UK

Dr. Nathan R. Trefl
USA

Dr. Peter Hamid
Denmark

Dr. Raj Mathur
UK

Dr. Richard Kennedy
UK

Dr. Sandra Bateman
UK

Dr. Yadava Jeve
UK

THE BIGGEST ACADEMIC EVENT OF FERTILITY
IN INDIA AT NEW DELHI

More Than
350
National Faculties

Limited Seats

Choose from 10 Pre Conference Workshops | 6 December
(Choose Any 1)

1) IFS Workshop on Dr. and Donor in Ovarian Stimulation (0800 - 1700)
2) Reproductive Surgery (0800 - 1700)
3) Ultrasonography Imaging in Infertility (0800 - 1700)
4) Andrology & Semenology (0800 - 1700)
5) Ovar Pickpup and Embryo Transfer (translators) (0900 - 1700)
6) Cryobiology (0800 - 1700)
7) Total Quality Management (0900 - 1700)
8) Counselling and Holistic Medicine (0900 - 1300)
9) Publish or Perish (0900 - 1300)
10) PGJT and Genomics (0900 - 1700)

Registration Fees

<table>
<thead>
<tr>
<th>Category</th>
<th>Regular Fees Till 31st October</th>
<th>Onspot</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFS Member</td>
<td>INR 12500</td>
<td>INR 14500</td>
</tr>
<tr>
<td>Non IFS Member</td>
<td>INR 14500</td>
<td>INR 16500</td>
</tr>
<tr>
<td>Conference Registration + Life Time IFS Membership</td>
<td>Embryologist INR 16500</td>
<td>Embryologist INR 18500</td>
</tr>
<tr>
<td>PG Students (No Dinner)</td>
<td>INR 7000</td>
<td>INR 8000</td>
</tr>
<tr>
<td>Accompanying Person</td>
<td>INR 11500</td>
<td>INR 12500</td>
</tr>
<tr>
<td>Foreign Delegates</td>
<td>$400</td>
<td>$500</td>
</tr>
</tbody>
</table>

One Day Registration Fees

<table>
<thead>
<tr>
<th>Category</th>
<th>INR 4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG Students (7th Dec or 8th Dec)</td>
<td></td>
</tr>
</tbody>
</table>

Deadline for Abstract Submission
15th Nov, 2019

Theme: Beyond Tomorrow

Conference Secretariat
Indian Fertility Society
302, 3rd Floor, Kailash Building,
26, Kasturba Gandhi Marg
C.P. New Delhi - 110001
+91-9667742015, +91-9899308083
+91-11-40320000

Conference Manager
Conferences International
Mr. Sumeet Gahai
B-220/2, 2nd Floor,
Opposite Kali Masjid, Savitri Nagar
New Delhi - 110017
Mobile: +91 9560493999

Register at www.fertivision2019.com

www.fertivision2019.com | fertivision2019@gmail.com